
CLX000 Technical Manual (v5.7X)

CSS Electronics

(Updated 2019-03-14)

Figure 1: CL1000, CL2000 & CL3000

Updated: 2019-03-14

Contents

1 About This Document 1

2 Introduction 2

3 Technical Specification 2

4 Modes of Operation 5

5 Connection & Installation 8

6 Memory Card Installation 10

7 Device Firmware Upgrade 12

8 Serial Interface 13

9 Wireless Connectivity 16

10 Log File Format 21

11 Device Configurations 24

12 Troubleshooting 43

1 About This Document

This manual describes the functionality of the CLX000 series of CAN-bus data loggers with firmware
v5.7X.

1.1 Typical application

The CLX000 series finds its use in all applications with a need to store CAN-bus communication
data. Examples of typical applications are:

• Automotive (e.g. J1939 or OBD)

• Industrial application monitoring

• Development and testing

• Monitoring and fault identification

• Monitoring of remote and mobile systems

1.2 References

This manual, firmware updates, drivers and additional software tools can be found on the product
web page: http://csselectronics.com

1

http://csselectronics.com

2 Introduction

The CLX000 offers simple and user-friendly logging of data from a CAN-bus without the use of a
computer. Data are stored on a standard SD-card in a simple format such that it can be directly
loaded into an analysis tool for further post processing. The logged data can be transferred to a
PC using a standard mini-USB cable and requires no special software. For advanced users, the
device offers a wide range of configuration possibilities, such as message filtering, downsampling,
automatic bit-rate detection, cyclic-logging, heartbeat signal, transmit messages and run-time
logging control. The ability to enable message filtering and configure which data fields to log
combined with the huge available storage capacity makes the device suitable for long-term data
logging. The device configuration can be done on a PC and requires no special software. Also,
the device can act as an USB interface to allow monitoring of real-time CAN-bus traffic from a
PC.

The CL3000 supports WiFi such that log files can be extracted wirelessly.

The! default device configuration enables the logger to detect the CAN-bus bit-rate and imme-
diately start logging data automatically. Simply connect the device to the CAN-bus using the
connector pinout listed in Table 3 on page 8.

3 Technical Specification

3.1 CL1000 specification

The specification of CL1000 is given below:

General:

• Quick and easy plug-and-play installation

• Logger status is indicated using three externally visible LEDs

• Supports firmware updates such that future features can be added

• Mini-USB port to access storage and to monitor real-time CAN-bus traffic

CAN-bus:

• One physical port compliant with physical layer standard ISO 11898-2

• Compliant with CAN specifications 2.0A (11-Bit ID) and 2.0B (29-Bit ID)

• Bit rates up to 1 Mbps (manually configured or automatically detected)

• Bit-rate auto-detection1

• Protocol independent

• Standard D-sub 9 (DB9) connector

• Advanced message filtering on eight configurable virtual channels

• CAN-bus silent/listen-only mode

• The device does not terminate the CAN-bus internally

1Auto-detectable bit-rates: 5K,10K,20K,33.333K,47.619K,50K,83.333K,95.238K,100K,125K,250K,500K,800K,1M

2

Data logging:

• Supports standard high-capacity (SDHC) SD-cards2

• CAN messages are time-stamped with 1ms resolution

• Highly configurable timestamp format

• Configurable data fields to log

• Logging state (enabled/disabled) can be changed run-time using a CAN-bus control message

• Supports heartbeat signal to indicate logger status periodically3

• Standard FAT file system

• Supports cyclic logging mode (oldest log file is deleted when file system is full)

• Channel specific message down-sampling to reduce frequency of logged messages

• Up to 20 single shot or periodic transmit messages

PC Interface:

• Real-time CAN-bus traffic monitoring

• Configurable serial interface filters

• Configurable channel to interface routing

Supply:

• Power can be supplied from CAN-bus or USB4

• Power supplied from the CAN-bus: +7.0V to +36V DC5

• Reverse voltage protection on CAN-bus supply

• Transient voltage event protection on supply lines6

• Power supplied by USB: +5.0V DC

• Consumption:

– CL1000 / CL2000: 0.5W

– CL3000: 1.0W

Mechanical:

• Robust enclosure

• Dimension: 66.7 x 42.7 x 23.5 mm (L x W x H)

• Weight: 45g

Operation:

• Operating temperature7: −20◦C to +80◦C

2Tested with up to 32 GB
3Payload includes logging state, time and space left on memory card
4Logging only possible with supply from CAN-bus connector
57.0V to +28V DC on HW rev < 4.0
6Designed to protect against low energy voltage events as a result of e.g. EMC and ESD
7Without SD-card

3

3.2 CL2000 specification

The specification of CL2000 is identical to the specification of CL1000 given above with the fol-
lowing additions:

Real-time clock:

• Built-in real-time clock with calendar and battery backup

• Absolute date and time information are added to log files

• Battery backup with more than two years of battery capacity 8

3.3 CL3000 specification

The specification of CL3000 is identical to the specification of CL2000 with the following additions:

Wireless connectivity:

• WiFi standard IEEE802.11 b/g/n

• Stand alone Access Point (AP mode) or connected as a Station (STA mode)

• Range

– AP mode: Up to 5 meters

– STA mode: Up to 15 meters

• Transfer speeds up to 70Mbps

• Security

– AP mode: WPA2

– STA mode: WEP, WPA, WPA2

• DHCP server in AP mode with support of up to 7 connected clients

• Build in HTTP server with direct log file download

• Configurable HTTP authentication security (user name and password)

• Machine friendly HTTP-based REST interface

• Automatic push of log files to remote server using FTP

• Automatic synchronization of time with remote HTTP-server

• Internal antenna

8Backup battery is replaceable

4

4 Modes of Operation

The CLX000 has two basic modes of operation:

• Mass storage device mode (MSD-mode)

• Logging mode

The device decides which mode to activate based on the mini-USB connection. If the device is
connected by USB to a PC during start-up, it will activate Mass storage device mode. Otherwise,
it will activate Logging mode. The flow of the modes is illustrated in Figure 2.

Power applied to device USB connected?

MSD mode

Logging mode

PC interface

FTP push

yes

no

Figure 2: The modes of operation: Mass storage device mode & Logging mode

Three visible LEDs on the back of the device indicate the status of operation in the two states.
The LEDs are located as illustrated in Figure 3.

Figure 3: Red, yellow and green LEDs indicate the status of the device

Below the modes and the interpretation of the LEDs are described in detail.

4.1 Mass storage device mode

If the device is powered on by the USB-cable connected to a PC, the device will activate Mass
storage device mode (MSD). In this mode the internal memory will be reserved for PC access.
The PC will recognise the device as a standard USB memory device such that the device storage
can be easily accessed. The logged data can now be transferred to the PC without the need of
special software. Additionally, the device configuration can be accessed and modified (refer to
Section 11 on page 24 for details).

To! prevent corruption of the device file system, always eject the device from the PC safely. Safe
ejection of the MSD on Windows is illustrated in Figure 4.

5

Figure 4: A mass storage device is safely ejected in Windows by right clicking the device drive in
My Computer and selecting Eject

4.1.1 LED interpretation

The interpretation of the device LEDs (Figure 3) in Mass storage device mode is given in Table 1.

State Description Green Yellow Red
1 Power on
2 USB connected
3 Memory error

Table 1: MSD-mode LED interpretation. LED solidly on: , LED flashing: , LED off:

Detailed LED interpretation description by state:

1. The green LED is on to indicate that the device is booting.

2. The green LED is on to indicate that the device in on. The red LED flashes as the PC
accesses (reads/writes) the internal memory.

3. The yellow and red LEDs are constantly on to indicate a problem with the internal memory
card. Please refer to TC.1 on page 43.

4.2 Logging mode

If the device is powered on without the USB-cable connected to a PC (power is supplied through
the CAN-bus connector), it will activate Logging mode. When the device enters Logging mode
the internal memory is reserved for data-logging and cannot be accessed through the USB-port.
The serial interface activates if the USB-cable is inserted after the device has entered Logging
mode, refer to Section 8 on page 13 for further details on the serial interface.

As the device enters Logging mode it will attempt to read the device configuration file located
on the memory-card (the device configuration is described in section 11 on page 24). If a valid
configuration file is found, the configuration is loaded by the device. If no valid configuration is
found, a default configuration is written to the memory card which is then loaded by the device.

The device is now ready to communicate with the CAN-bus and log messages according to the
loaded device configuration file.

4.2.1 LED interpretation

The interpretation of the device LEDs (Figure 3) in Logging mode is given in table 2.

Detailed LED interpretation description by state:

1. The green LED is on to indicate that the device is booting.

2. The red LED flashes three times if no valid configuration is found and a valid default
configuration is written to the memory.

6

State Description Green Yellow Red
1 Power on
2 Configuration file found
3 Configuration file not found
4 Detecting bit-rate
5 Logging
6 Memory error

Table 2: MSD-mode LED interpretation. LED solidly on: , LED flashing: , LED flashing
three times: , LED off:

3. The yellow LED flashes three times to indicate that a valid configuration is found and loaded.

4. The yellow LED remains solid on until a valid bit-rate is detected, if auto-detection is
configured.

5. The yellow LED flashes to indicate CAN-bus traffic (note that the LED will be very dim
if the CAN-bus load is low). The red LED flashes to indicate that data are written to the
memory card.

6. The yellow and red LEDs are constantly on to indicate a problem with the internal memory
card. Please refer to TC.1 on page 43.

7

5 Connection & Installation

5.1 CAN-bus Connector

The CLX000 can be directly connected to a CAN-bus using a standard D-sub 9 connector. The
connector supports both the CAN-bus communication signals and the supply to the CLX000. The
connector is located at the end of the device, as illustrated in Figure 5.

Figure 5: View of the CLX000 CAN-bus connector.

The pinout of the D-sub 9 CAN-bus connector is illustrated in Figure 6 with the same orientation
as in Figure 5. The connector pin assignment is listed in Table 3.

1 2 (3) 4 5

(6) 7 8 9

Figure 6: Front view of the CLX000 CAN-bus connector

Pin No. Function
1 Not connected
2 CAN-L

(3) GND (3 and 6 internally connected)

4 Not connected
5 Not connected

(6) GND (3 and 6 internally connected)

7 CAN-H
8 Not connected
9 Device supply (see section 3 on page 2)

Table 3: CLX000 connector pin assignment

Note that only the pins with underlined numbers are used internally. The unused pins can be left
unconnected. Pin 3 and 6 share the same function and are internally connected.

Note! that some CAN-buses might not include the supply wires to supply the CLX000. If this is
the case, the device supply pins must be connected to an external supply.

Note! that the voltage supplied between pin 3 (or 6) and 9 cannot exceed the limits given in section
3 on page 2. If the limits are exceeded, the device might get permanently damaged.

8

5.2 USB Installation

The following requirements shall be satisfied when the device is connected through USB.

5.2.1 Grounding

Care! should be taken to minimize the voltage difference between the USB and the D-sub9 connec-
tion if both are connected to the device at the same time. Differences in ground voltages can result
in ground loops which can permanently damage the device. Stationary PCs are often grounded
(care should be taken in this case) while laptops are often floating.

5.3 CAN-bus Installation

The following requirements shall be satisfied when the logger is installed in a CAN-bus network.

5.3.1 ISO 11898-2

ISO 11898-2 defines the basic physical requirements of a high-speed CAN-bus network. Some of
these are listed below:

• Max line length (determined by bit-rate)

• Line termination (120 ohm line termination at each end of data line)

• Twisted data lines

• Ground offsets in range -2V to +7V

5.3.2 Shielding

Shielding is not needed in all applications. If shielding is used, it is recommended that a short
pig-tail be crimped to the shield end at each connector.

5.3.3 Grounding

ISO 11898-2 tolerates some level of ground offset between nodes. To ensure the offset remains
within range, it is recommended to use a single point ground reference for all nodes connected to
the CAN-bus. This may require the ground wire to be carried along with data wires.

5.3.4 Stub length

It is recommended that the stub length is kept short. The stub length is defined as the length
from the ”main” data line wires to the connection point of the can-bus nodes.

5.3.5 Supply quality

The nominal voltage shall be kept within specifications at all times. The device is internally
protected against low energy voltage events which can be expected as a result of supply wire
noise, ESD and stub-wire inductance.

If the supply line is shared with inductive loads, care should be taken to ensure high energy voltage
events do not reach the logger. Automotive environments often include several sources electrical
hazards, such as load dumps (disconnection of battery while charging), relay contacts, solenoids,

9

alternator, fuel injectors etc. The internal protection circuitry of the CLX000 is not capable of
handling high energy voltage event from such sources.

6 Memory Card Installation

The CLX000 uses a standard SD-card to store data9. The SD-card is placed inside the device and
can be replaced. If not already present, an SD-card should be inserted into the device to enable
data logging. To insert an SD-card, it is necessary to open the device.

Please! note that it is not necessary to open the device if it comes with a preinstalled SD-card.

Please! note that it is not necessary to remove the SD-card to access logged data. The device can
be directly connected to the PC using a USB-cable as described in section 4.1.

To open the device a 4 mm flat-bladed screwdriver is needed. Insert the screwdriver into one of
the opening slots as indicated in Figure 7.

Figure 7: Side view of the CLX000 enclosure showing the opening slots

To open the device, gently twist the screwdriver to separate the device enclosure.

When open, locate the SD-card connector slot. The slot is of the push-push type (push to both
insert and eject the card). Insert the SD-card into the connector slot and push until it clicks as
illustrated in Figure 8.

Figure 8: Simplified view of the CLX000 with one piece of the enclosure removed. The SD-card is
pushed into the connector slot as indicated by the green arrow.

9Refer to the device specification on page 2

10

To close the device, make sure that the printed circuit board is perfectly aligned with the edges of
the enclosure and then press the two pieces of the enclosure together. When the enclosure pieces
snap together the device is closed.

11

7 Device Firmware Upgrade

The device supports USB Device Firmware Upgrade (DFU) such that new firmware updates can
be uploaded to the device when new features become available. Firmware can be uploaded to the
device using tools supporting the DFU protocol.

The device will only be able to accept new firmware images when in DFU mode, therefore, to
enter DFU mode, the device should be powered on with the DFU button pressed (the device
enclosure exposes three LEDs and one DFU button slot), as illustrated in Figure 9. The sequence
for entering DFU mode and updating firmware is:

1. Make sure that device is powered completely off

2. Gently push and hold the DFU button, as illustrated in Figure 9

3. Connect the USB cable to power on the device

4. The device will power on and enter DFU mode (red LED constant on, green and yellow
LEDs off)

5. Release the DFU button

6. Open tool with DFU support

7. Select new compatible firmware image and upload image to device

8. When upload is complete, power cycle the device to start the new firmware

Note! that the device will only accept officially released firmware images

Please! make sure to use a non-conductive tool to activate the DFU button

Figure 9: The DFU button is activated with a pointed non-conducting object.

12

8 Serial Interface

The CLX000 supports a serial interface which can be accessed using the USB connection. The
interface can be used to communicate with the CLX000 in real time. Refer to section 8.1.3 for
supported application interfaces.

To enable the serial interface, the device should be powered up using the CAN-bus connector.
When the device has booted, the the USB-cable can be connected to activate the interface.

On MS Windows, the active serial interface will be listed as a ”COM-port” in the device manager.

8.1 Serial Protocol

The serial protocol consists of three simple layers: Physical Layer (PHY, 8.1.1), Data-Link Layer
(DLL, 8.1.2) and Application Layer (AL, 8.1.3). The layered model ensures effective and robust
communication between the CLX000 and the host (e.g. PC).

In the following sections, the protocol layers will be described.

8.1.1 Physical layer

The USB connection creates a virtual serial interface with the following configuration:

• Bit-rate: 115200 bit/s

• Data bits: 8

• Stop bits: 1

• Parity: None

• Flow control: None

8.1.2 Data Link Layer

The purpose of the DLL is to ensure safe and error free transmission of message frames between
the device and the host. The DLL ensures that the start/stop of a message frame can always be
uniquely identified and that the integrity of the data payload can be verified by the receiver.

The design of the DLL is heavily inspired by the widely used HDLC specification. The DLL has
the following structure:

Start flag Payload CRC Stop flag
0x7E ... MSB LSB 0x7E

Frame identification

The start and end of a frame are always uniquely defined by the start/stop flag with a unique
one-byte value 0x7E.

Byte stuffing is used to avoid that the start/stop byte appears randomly in the message Payload
or CRC fields (which could lead to confusion regarding the start/stop of the frame). The CLX000

uses a control byte with value 0x7D to escape occurrences of the unique start/stop byte in the
data.

To decode the message frame, the receiver shall examine the data between the start/stop flags. If
the control byte is detected, the received shall perform the following actions:

1. Discard the control byte (0x7D)

13

2. Restore the following byte by complementing its 5th bit (indexed from zero)

Frame integrity verification

When the frame has been destuffed, the integrity of the data can be verified using the CRC field.
To verify the integrity of the Payload, the receiver shall perform the following actions:

1. Calculate the CRC16 checksum over the Payload

2. Compare the calculated checksum with the checksum stored in the CRC field (2 bytes)

3. If the calculated and the stored values are equal, the frame is valid

The CRC16 calculation uses the standard CRC-16 polynomial (also known as CRC-16-IBM):

x16 + x15 + x2 + 1

The polynomial representation is 0x8005.

The details of the CRC calculation are beyond the scope of this manual.

Example 1 - Decoding of received message frame

The following message frame is received on the serial interface, indicated by the start/stop byte
pair:

Start flag Stuffed frame data Stop flag
7E AA BB CC 7D 5E DD EE FF A3 84 7E

Scanning the bytes in between the start/stop flags reveals one occurrence of the control byte 0x7D.
By following the destuffing steps, the control byte is removed and the following byte restored to
the original value (the value before the stuffing performed by the CLX000) by complementing the
5th bit:

Start flag Destuffed frame data Stop flag
Payload CRC

7E AA BB CC 7E DD EE FF A3 84 7E

To validate the integrity of the Payload, the CRC16 is calculated over the Payload bytes:

CRC16(AA,BB,CC, 7E,DD,EE,FF) = A384.

The validation shows that the Payload is valid as the calculated and the stored CRC values are
equal.

8.1.3 Application Layer

The AL is the decoded Payload of the DLL and contains an application ID (1 byte) and the
application data:

ID Application data

The interpretation of the application data is given by the ID field. Below are the supported
application IDs listed:

ID Description
1 Received CAN-bus message
2 Transmitted CAN-bus message

14

The following describe above listed application data interpretations.

Received CAN-bus message

Description: The application data contain a CAN-bus message received by the logger.

Format:

ID Application data
1 Time Time ms Message ID Data length Data

4 byte 2 byte 4 byte 1 byte 0..8 byte

The Time field is encoded as ”Epoch” seconds. The message ID is extended if bit 29 (indexed
from zero) is set. Multi-byte fields shall be interpreted MSB (Most-Significant- Byte) first.

Transmitted CAN-bus message

Description: The application data contain a CAN-bus message transmitted by the logger.

Format:

ID Application data
2 Time Time ms Message ID Data length Data

4 byte 2 byte 4 byte 1 byte 0..8 byte

The Time field is encoded as ”Epoch” seconds. The message ID is extended if bit 29 (indexed
from zero) is set. Multi-byte fields shall be interpreted MSB (Most-Significant- Byte) first.

15

9 Wireless Connectivity

The CL3000 supports wireless connectivity over WiFi. The WiFi specifications are given in Section
3.3.

9.1 WiFi mode

The CL3000 can be configured to function either as an Access Point (AP mode) or as a Station (STA
mode). When in AP mode, the device creates a local WiFi access point and accepts incoming
connections. In STA mode, the device functions as a wireless LAN client and connects to an
existing access point. The wireless functionality is active in both MSD and logging mode.

The AP and STA network topologies are illustrated in Figure 10 and 11 respectively.

CL3000

STA 1 STA 2 STA 3

Figure 10: CL3000 in AP mode

AP

STA 1 STA 2 CL3000

WAN

Figure 11: CL3000 in STA mode

Refer the Section 11 for specifics on how to configure the wireless features.

A! change to the wireless configuration is loaded next time the CL3000 is booted in logging mode.

9.1.1 AP mode

When configured in AP mode, the logger creates a local wireless access point. The access point
supports up to seven connected clients, such as PCs, tablets and smart-phones.

The access points is protected using WiFi security type WPA2. The access point name and
password are configurable. Network nodes connecting to the device access point are automatically
assigned an IP-address by a DHCP service running on the device.

Note! that the access point created by the CL3000 does not provide internet access to connected
devices (as illustrated in Figure 10).

9.1.2 STA mode

When configured in STA mode, the logger attempts to connect to an existing access point as a
wireless LAN client. The name and password of the access point to connect to is set in the device
configuration file. It is possible to connect to access points using WiFi security types WEP, WPA
or WPA2. The CL3000 expects to be assigned an IP-address by a DHCP service running on the
access point.

16

When connected to an access point, the CL3000 is accessible by all devices on the local network.
If the access point provides internet access (WAN in Figure 11), then the CL3000 is remotely
accessible by any internet connected device10.

In! STA mode, the CL3000 will be accessible by all stations connected to the same network.

If! multiple loggers are setup to connect to the same local network, make sure each uses an unique
network application name (host names).

The! wireless range in STA mode is generally better compared to AP mode.

9.1.3 Web server

The CL3000 implements a build in web server, which can be accessed in both AP and STA mode.

The web server hosts one of more web pages which can be accessed through any standard web
browser. The main web page can always be accessed directly using either the CL3000 IP-address
or the application name (as set in the configuration file).

The main web page lists the log files on the device which are ready to download and links to any
additional pages running on the CL3000.

Example 1 - Web page access in AP mode

The APPNAME field in the configuration file is set to ”id0001”.

The CLX000 main web page can be accessed by entering either of the following into a web browser
address bar:

• http://id0001/

• http://192.168.0.1/

In! AP mode, the CL3000 is on IP-address 192.168.0.1

Example 2 - Web page access in STA mode

The APPNAME field in the configuration file is set to ”id0001” and the CL3000 has been assigned
IP-address 192.168.1.100 by the access point DHCP service.

The device main web page can be accessed by entering either of the following into a web browser
address bar:

• http://id0001/

• http://192.168.1.100/

The! IP-address assigned to the CL3000 may change on each connection to the access point.

9.2 FTP remote push service

Refer to section 11 on page 24 for more information on the FTP push service configuration.

The CL3000 supports automatic push of log files to a remote server using the FTP protocol.

The FTP push service is active in logging mode if ftpEnb is set to true (refer to the configura-
tion section). When a log file is closed (e.g. when fileSplitSize is reached), the CL3000 will
automatically attempt to upload the file to the remote server.

The! final log file in a logging session is closed when power is disconnected. This file will be
uploaded the next time the logger is powered on.

10Remote access may require some additional configuration of the access point

17

The! FTP-push uses a 30 min timeout on file transfers. Select a fileSplitSize such that files
can be fully uploaded before the timeout.

9.2.1 File naming

Uploaded log file names are prefixed the logger ID (can be set in the configuration file), e.g. log
file ”0000001.TXT” is uploaded as ”myloggerid 0000001.TXT”. Prefixing the logger ID prevents
file name collisions on the server in setups where multiple loggers upload to the same server. The
serverDir setting can be used to further separate log files from different loggers into separate
folders on the server.

Use! unique logger IDs to avoid name collisions when multiple loggers upload to the same FTP
server.

Set! a server upload directory to upload log files to a specific folder on the server.

9.2.2 FTP push network topology

FTP push allows the logger to push log files to a local or a remote FTP server. In both cases,
the logger WiFi shall be configured in STA mode (refer to Section 9.1.2) to enable access to the
FTP server. The local and remote FTP server network topologies are described in detail in the
following.

Local network topology

The local network topology is illustrated in Figure 12. In the local topology, the logger does not
require internet access, as the FTP server is located on the same local network.

Logger WiFi AP 1 FTP Server

Figure 12: FTP push network local

The following points shall be considered:

• The logger WiFi connection in STA mode shall be setup to connect to AP1 (refer to Section
9.1.2)

• AP1 firewalls etc. shall allow FTP traffic on port 21

• Any firewalls running on the FTP server shall allow traffic on port 21

• The FTP login credentials (user name and password) used by the logger, shall allow the
logger to create and modify files in the upload directory on the FTP server

• The log file upload directory shall exist on the FTP server (logger cannot create new direc-
tories)

If! multiple loggers are used, the FTP server should either allow multiple connections using a shared
login or provide separate logins for each logger

Remote network topology

The remote network topology is illustrated in Figure 13. In this setup, the FTP server is not
located within the same local network as the logger. The internet is used to connect the local
network of the logger with the local network of the FTP server. This setup is more complicated
compared with the simpler local setup explained above. With the remote setup, it is possible to
push log files to an FTP server located anywhere in the world.

18

Logger WiFi AP 1 Internet AP 2 FTP Server

Figure 13: FTP push network remote

The following points shall be considered in addition to the points listed in the local setup:

• AP1 shall provide access to the internet

• AP2 firewalls etc. shall allow incoming traffic on port 21

• AP2 shall forward incoming traffic on port 21 to the FTP server (port forwarding)

If! a hosted FTP service is used, then the points above is likely setup correctly as default.

FTP push sequence

The complete FTP push sequence is illustrated in Figure 14 and a detailed description is given
below. The sequence runs continuously in loop when the FTP feature is enabled.

FTP #1

WiFi connected? #2

Log file ready? #3

FTP server available? #4

Upload log file #5

Upload successful? #6

Delete log file #7

Pause#8

yes

no

yes

no

yes

no

yes

no

Figure 14: FTP push sequence

1. The FTP push sequence runs if FTP is enabled in the CL3000 configuration file.

2. Is the hotspot set in the CL3000 configuration file in range?

3. Is a (or more) log file ready to be uploaded to the server?

4. Is the remote FTP server available?

5. The log file is uploaded to the server. This can take several minutes depending on the log
file size and the transfer speed.

19

6. Did the upload complete successfully?

7. The uploaded log file is deleted from the CL3000 if it was successfully uploaded.

8. Pauses a few seconds before next cycle

Note! that log files are only deleted when they have successfully transferred to the server

20

10 Log File Format

The following section describes the log file format.

An example log file is given for reference below:

Logger type : CL2000
HW rev : 6 . xx
FW rev : 5 .31
Logger ID : OPEL
Ses s i on No . : 70
S p l i t No . : 1
Time : 20170101 T022232
Value s epa ra to r : ” ; ”
Time format : 4
Time separa to r : ””
Time separa to r ms : ””
Date s epa ra to r : ””
Time and date s epa ra to r : ”T”
Bit−r a t e : 500000
S i l e n t mode : f a l s e
Cyc l i c mode : f a l s e
Timestamp ; Type ; ID ; Data
01T022231683 ; 8 ; 7 df ;02010 d5555555555
01T022231688 ; 0 ; 7 e8 ;03410 d00aaaaaaaa
01T022231693 ; 8 ; 7 df ;02010 c5555555555
01T022231701 ; 0 ; 7 e8 ;04410 c0000aaaaaa
01T022231783 ; 8 ; 7 df ;02010 d5555555555
01T022231788 ; 0 ; 7 e8 ;03410 d00aaaaaaaa
01T022231793 ; 8 ; 7 df ;02010 c5555555555
01T022231801 ; 0 ; 7 e8 ;04410 c0000aaaaaa

10.1 File format

Log files are written in a CSV-like format using the reduced ASCII character set. The log files
can be opened directly in most simple text editors. Log entries are formatted according to the
settings in the configuration file and terminated by a single ”line feed” character.

Note! that some text editors do not recognise a single ”line feed” character as a new line.

10.2 File name

The log file names are built using a unique sequential 7 digit number. Each time a new log file
is created, the log file name number is increased by one. The log file extension is *.txt, e.g.
”0000001.txt”.

Note! that the log name number is not reset on a power-cycle.

10.3 Header

The log file header is added to all log files. The header contains information needed to identify
and interpret the log file. Log file header lines start with ”#”.

Below the log header entries are described:

• Logger type: The CLX000 type

• HW rev: The hardware revision of the CLX000

• FW rev: The running firmware revision of the CLX000

• Logger ID: The logger identification string

21

• Session No.: The session sequential number

• Split No.: The log file split number

• Time: The log file start time with fixed format ”YYYYMMDDThhmmss”

• Value separator: The value separator used in the log file

• Time format: The time stamp format used in the log file

• Time separator: The timestamp time separator

• Time separator ms: The timestamp ms separator

• Date separator: The timestamp date separator

• Time and date separator: The timestamp time to date separator

• Bit-rate: The manually set or auto detected CAN-bus bit rate

• Silent mode: The state of silent mode

• Cyclic mode: The state of cyclic mode

10.3.1 Log file numbering

Session No.
Each logging session is given a unique number. Each time the logger powers up, the session number
is increased by one. The session number can be used to group multiple log files from the same
logging session (log sessions can be split across several log files, configured by the fileSplitSize

field).

Note! that the session number is not reset on a power-cycle.

Split No.
The split number is reset each time the logger powers up. The purpose of the Split No. is to
ensure an unambiguous order of log files within the same logging session (log files with the same
Session No.)

10.3.2 Log entry format

The format of the log file data is unambiguously given by the Time format and separator entries
in the log file.

10.4 Data fields

The date field header identifies the column values and how they are separated (Value separator).
Which date fields to include in log files can be set in the configuration file.

The following data fields can be included in the log file:

• Timestamp: Timestamp in ms (1ms resolution)

• Lost: Message lost flag. If the flag is set (1 in log file), one (or more) CAN-message(s),
before the message with the flag, was (were) potentially lost

• Type: Message type indicator. Is either 0 (received standard), 1 (received extended), 8
(transmitted standard) or 9 (transmitted extended) in the log file

• ID: CAN-bus message identifier

• Length: The length in bytes of the CAN-message data field

22

• Data: CAN-bus message data bytes (0-8)

All fields except the timestamp are written in hexadecimal format. To ensure unambiguous inter-
pretation, the data field bytes are left zero padded, such that each byte is always written using
two characters, e.g. ”010203”.

Note! that the timestamp is either relative to power up or absolute depending on the CLX000

hardware (real-time-clock).

23

11 Device Configurations

The device configuration file (*.ini file format) is used to configure the behaviour of the CLX000.
The configuration file can be accessed from a PC when the device is in MSD-mode. To restore
the default configuration, delete the configuration from the device storage and power cycle.

The default configuration file of the CL1000 is:

; CLX000 c o n f i g u r a t i o n f i l e

[r e v i s i o n] ; Con f igurat ion f i l e r e v i s i o n (do not modify)
r e v i s i o n = 14 ; Conf igurat ion r e v i s i o n number

[l og] ; Log f i l e c o n f i g u r a t i o n
logger ID = id0001 ; Logger i d e n t i f i c a t i o n s t r i n g (max 15 c h a r a c t e r s)
loggingEnb = true ; Defau l t l ogg ing s t a t e
va lueSeparator = 59 ; Log f i l e s epa ra to r ASCII char (DEC)
timestampFormat = 4 ; Timestamp format (0 = kkk , 6 = YYYYMMDDhhmmsskkk)
timestampTimeSeparator = 0 ; Timestamp time separa to r ASCII char (DEC, 0 = none)
timestampTimeMsSeparator = 0 ; Timestamp m i l l i s e c o n d separa to r ASCII char (DEC, 0 = none)
timestampDateSeparator = 0 ; Timestamp date s epa ra to r ASCII char (DEC, 0 = none)
timeTimeDateSeparator = 84 ; Timestamp date / time separa to r ASCII char (DEC, 0 = none)
f i l e S p l i t S i z e = 20 ; F i l e s p l i t s i z e in MB (DEC, range : 1−512)
f i l e S p l i t T i m e = 0+0 ; F i l e s p l i t time in sec (DEC, 0+0 = none , range : 60−86400)
cyc l i cLogg ing = f a l s e ; De lete o l d e s t s to r ed f i l e when f u l l
cyc l i cLogg ingDataLimit = 0 ; Limit on t o t a l logged data in MB (DEC, 0 = none)

[hear tbeat]
heartbeatEnb = f a l s e ; Enable heartbeat s i g n a l
extendedID = true ; Use extended 29 b i t message ID (2 . 0B)
msgID = 00435353 ; CAN message ID o f heartbeat s i g n a l (HEX)

[c o n t r o l]
controlEnb = f a l s e ; Enable c o n t r o l s i g n a l
extendedID = true ; Use extended 29 b i t message ID (2 . 0B)
msgID = 00435354 ; CAN message ID o f c o n t r o l s i g n a l (HEX)

[dataF i e ld s] ; Data f i e l d s in l og f i l e
timestamp = true ; Log message timestamp
l o s t = f a l s e ; Log i f a message was l o s t
type = true ; Log type o f i d e n t i f i e r
id = true ; Log message ID
dataLength = f a l s e ; Log number o f message data bytes
data = true ; Log message data

[can] ; CAN bus c o n f i g u r a t i o n
b i t r a t e = 0 ; CAN−bus b i t r a t e (DEC) , 0 = auto−det e c t
s i l e n t = f a l s e ; Listen−only mode

[channel1] ; CAN channel 1 c o n f i g u r a t i o n
channelEnb = true ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = f a l s e ; Enable below message f i l t e r i n g
msgID = 00000000 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel2] ; CAN channel 2 c o n f i g u r a t i o n
channelEnb = true ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = true ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = f a l s e ; Enable below message f i l t e r i n g
msgID = 00000000 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel3] ; CAN channel 3 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)

24

msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel4] ; CAN channel 4 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel5] ; CAN channel 5 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel6] ; CAN channel 6 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel7] ; CAN channel 7 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel8] ; CAN channel 8 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

; [t ransmit1] ; Transmit message 1
; d e s t i n a t i o n = 0 ; 0 = None , 1 = Logger , 2 = I n t e r f a c e , 3 = Both
; per iod = 100 ; Period in ms (DEC, 10 ms r e s o l u t i o n)
; de lay = 0 ; Delay in ms (DEC, 10 ms r e s o l u t i o n)
; extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
; msgID = 00000001 ; Transmit message ID (HEX)
; msgData = {0102030405060708} ; Message data (HEX)

25

The default configuration file of the CL2000 is:

; CLX000 c o n f i g u r a t i o n f i l e

[r e v i s i o n] ; Con f igurat ion f i l e r e v i s i o n (do not modify)
r e v i s i o n = 14 ; Conf igurat ion r e v i s i o n number

[l og] ; Log f i l e c o n f i g u r a t i o n
logger ID = id0001 ; Logger i d e n t i f i c a t i o n s t r i n g (max 15 c h a r a c t e r s)
loggingEnb = true ; Defau l t l ogg ing s t a t e
va lueSeparator = 59 ; Log f i l e s epa ra to r ASCII char (DEC)
timestampFormat = 4 ; Timestamp format (0 = kkk , 6 = YYYYMMDDhhmmsskkk)
timestampTimeSeparator = 0 ; Timestamp time separa to r ASCII char (DEC, 0 = none)
timestampTimeMsSeparator = 0 ; Timestamp m i l l i s e c o n d separa to r ASCII char (DEC, 0 = none)
timestampDateSeparator = 0 ; Timestamp date s epa ra to r ASCII char (DEC, 0 = none)
timeTimeDateSeparator = 84 ; Timestamp date / time separa to r ASCII char (DEC, 0 = none)
f i l e S p l i t S i z e = 20 ; F i l e s p l i t s i z e in MB (DEC, range : 1−512)
f i l e S p l i t T i m e = 0+0 ; F i l e s p l i t time in sec (DEC, 0+0 = none , range : 60−86400)
cyc l i cLogg ing = f a l s e ; De lete o l d e s t s to r ed f i l e when f u l l
cyc l i cLogg ingDataLimit = 0 ; Limit on t o t a l logged data in MB (DEC, 0 = none)

[hear tbeat]
heartbeatEnb = f a l s e ; Enable heartbeat s i g n a l
extendedID = true ; Use extended 29 b i t message ID (2 . 0B)
msgID = 00435353 ; CAN message ID o f heartbeat s i g n a l (HEX)

[c o n t r o l]
controlEnb = f a l s e ; Enable c o n t r o l s i g n a l
extendedID = true ; Use extended 29 b i t message ID (2 . 0B)
msgID = 00435354 ; CAN message ID o f c o n t r o l s i g n a l (HEX)

[dataF i e ld s] ; Data f i e l d s in l og f i l e
timestamp = true ; Log message timestamp
l o s t = f a l s e ; Log i f a message was l o s t
type = true ; Log type o f i d e n t i f i e r
id = true ; Log message ID
dataLength = f a l s e ; Log number o f message data bytes
data = true ; Log message data

[can] ; CAN bus c o n f i g u r a t i o n
b i t r a t e = 0 ; CAN−bus b i t r a t e (DEC) , 0 = auto−det e c t
s i l e n t = f a l s e ; Listen−only mode

[channel1] ; CAN channel 1 c o n f i g u r a t i o n
channelEnb = true ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = f a l s e ; Enable below message f i l t e r i n g
msgID = 00000000 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel2] ; CAN channel 2 c o n f i g u r a t i o n
channelEnb = true ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = true ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = f a l s e ; Enable below message f i l t e r i n g
msgID = 00000000 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel3] ; CAN channel 3 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel4] ; CAN channel 4 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g

26

msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel5] ; CAN channel 5 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel6] ; CAN channel 6 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel7] ; CAN channel 7 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel8] ; CAN channel 8 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

; [t ransmit1] ; Transmit message 1
; d e s t i n a t i o n = 0 ; 0 = None , 1 = Logger , 2 = I n t e r f a c e , 3 = Both
; per iod = 100 ; Period in ms (DEC, 10 ms r e s o l u t i o n)
; de lay = 0 ; Delay in ms (DEC, 10 ms r e s o l u t i o n)
; extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
; msgID = 00000001 ; Transmit message ID (HEX)
; msgData = {0102030405060708} ; Message data (HEX)

[RTC] ; Real Time Clock
epochTime = 0 ; Epoch time (0 to keep cur rent time)
adjustment = 0 ; Adjustment in sec to cur rent time (max +−129600 sec)

27

The default configuration file of the CL3000 is:

; CLX000 c o n f i g u r a t i o n f i l e

[r e v i s i o n] ; Con f igurat ion f i l e r e v i s i o n (do not modify)
r e v i s i o n = 14 ; Conf igurat ion r e v i s i o n number

[l og] ; Log f i l e c o n f i g u r a t i o n
logger ID = id0001 ; Logger i d e n t i f i c a t i o n s t r i n g (max 15 c h a r a c t e r s)
loggingEnb = true ; Defau l t l ogg ing s t a t e
va lueSeparator = 59 ; Log f i l e s epa ra to r ASCII char (DEC)
timestampFormat = 4 ; Timestamp format (0 = kkk , 6 = YYYYMMDDhhmmsskkk)
timestampTimeSeparator = 0 ; Timestamp time separa to r ASCII char (DEC, 0 = none)
timestampTimeMsSeparator = 0 ; Timestamp m i l l i s e c o n d separa to r ASCII char (DEC, 0 = none)
timestampDateSeparator = 0 ; Timestamp date s epa ra to r ASCII char (DEC, 0 = none)
timeTimeDateSeparator = 84 ; Timestamp date / time separa to r ASCII char (DEC, 0 = none)
f i l e S p l i t S i z e = 20 ; F i l e s p l i t s i z e in MB (DEC, range : 1−512)
f i l e S p l i t T i m e = 0+0 ; F i l e s p l i t time in sec (DEC, 0+0 = none , range : 60−86400)
cyc l i cLogg ing = f a l s e ; De lete o l d e s t s to r ed f i l e when f u l l
cyc l i cLogg ingDataLimit = 0 ; Limit on t o t a l logged data in MB (DEC, 0 = none)

[hear tbeat]
heartbeatEnb = f a l s e ; Enable heartbeat s i g n a l
extendedID = true ; Use extended 29 b i t message ID (2 . 0B)
msgID = 00435353 ; CAN message ID o f heartbeat s i g n a l (HEX)

[c o n t r o l]
controlEnb = f a l s e ; Enable c o n t r o l s i g n a l
extendedID = true ; Use extended 29 b i t message ID (2 . 0B)
msgID = 00435354 ; CAN message ID o f c o n t r o l s i g n a l (HEX)

[dataF i e ld s] ; Data f i e l d s in l og f i l e
timestamp = true ; Log message timestamp
l o s t = f a l s e ; Log i f a message was l o s t
type = true ; Log type o f i d e n t i f i e r
id = true ; Log message ID
dataLength = f a l s e ; Log number o f message data bytes
data = true ; Log message data

[can] ; CAN bus c o n f i g u r a t i o n
b i t r a t e = 0 ; CAN−bus b i t r a t e (DEC) , 0 = auto−det e c t
s i l e n t = f a l s e ; Listen−only mode

[channel1] ; CAN channel 1 c o n f i g u r a t i o n
channelEnb = true ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = f a l s e ; Enable below message f i l t e r i n g
msgID = 00000000 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel2] ; CAN channel 2 c o n f i g u r a t i o n
channelEnb = true ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = true ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = f a l s e ; Enable below message f i l t e r i n g
msgID = 00000000 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel3] ; CAN channel 3 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel4] ; CAN channel 4 c o n f i g u r a t i o n

28

channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel5] ; CAN channel 5 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel6] ; CAN channel 6 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel7] ; CAN channel 7 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

[channel8] ; CAN channel 8 c o n f i g u r a t i o n
channelEnb = f a l s e ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 00000001 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

; [t ransmit1] ; Transmit message 1
; d e s t i n a t i o n = 0 ; 0 = None , 1 = Logger , 2 = I n t e r f a c e , 3 = Both
; per iod = 100 ; Period in ms (DEC, 10 ms r e s o l u t i o n)
; de lay = 0 ; Delay in ms (DEC, 10 ms r e s o l u t i o n)
; extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
; msgID = 00000001 ; Transmit message ID (HEX)
; msgData = {0102030405060708} ; Message data (HEX)

[RTC] ; Real Time Clock
epochTime = 0 ; Epoch time (0 to keep cur rent time)
adjustment = 0 ; Adjustment in sec to cur rent time (max +−129600 sec)

[WIFI]
appName = id0001 ; App l i ca t ion name (1−15 c h a r a c t e r s)
appMode = 4 ; WIFI mode (4 = Access Point , 5 = Stat i on)
appSSID = id0001 ; WIFI SSID (1−32 c h a r a c t e r s)
appNetworkKey = 12345678 ; WIFI password (8−32 c h a r a c t e r s)
httpdMode = 0 ; Use a c c e s s au then t i c a t i on (0 = no , 1 = yes)
httpdUser = user ; Access au then t i c a t i on user name (0−32 c h a r a c t e r s)
httpdPass = 12345678 ; Access au then t i c a t i on password (0−32 c h a r a c t e r s)
rtcSyncEnb = f a l s e ; Enable i n t e r n a l c l o ck auto sync
rtcSyncAddr = goog le . com ; I n t e r n a l c l o ck auto sync s e r v e r address

[FTP]
ftpEnb = f a l s e ; Enable FTP upload s e r v i c e
serverAddr = 1 9 2 . 1 6 8 . 1 . 1 ; Hostname / IP o f the FTP s e r v e r (0−32 c h a r a c t e r s)

29

s e rv e rD i r = / ; Di rec to ry on FTP s e r v e r (0−32 c h a r a c t e r s)
user = user ; FTP user name (0−32 c h a r a c t e r s)
pwd = 12345678 ; FTP password (0−24 c h a r a c t e r s)

30

11.1 Configurations file description

The INI file format is a simple text based configuration file format which can be edited by any
simple text editor (such as MS Notepad). The configuration of the CLX000 uses the INI file format
and syntax. Comments are given by the semicolon symbol (;) and can be added by the user as
helpful notes directly in the configuration. Comments will not be interpreted by the device and
have not to follow any specific syntax.

Below each section of the configuration file are explained (in the INI file syntax, a section is marked
by square brackets [section name]):

Configuration file revision:

[r e v i s i o n] ; Con f igurat ion f i l e r e v i s i o n (do not modify)
r e v i s i o n = 14 ; Conf igurat ion r e v i s i o n number

The [revision] section should not be modified and is simply used to ensure compatibility between
the running device firmware and the format of the configuration file.

Log file configuration:

[l og] ; Log f i l e c o n f i g u r a t i o n
logger ID = id0001 ; Logger i d e n t i f i c a t i o n s t r i n g (max 15 c h a r a c t e r s)
loggingEnb = true ; Defau l t l ogg ing s t a t e
va lueSeparator = 59 ; Log f i l e s epa ra to r ASCII char (DEC)
timestampFormat = 4 ; Timestamp format (0 = kkk , 6 = YYYYMMDDhhmmsskkk)
timestampTimeSeparator = 0 ; Timestamp time separa to r ASCII char (DEC, 0 = none)
timestampTimeMsSeparator = 0 ; Timestamp m i l l i s e c o n d separa to r ASCII char (DEC, 0 = none)
timestampDateSeparator = 0 ; Timestamp date s epa ra to r ASCII char (DEC, 0 = none)
timeTimeDateSeparator = 84 ; Timestamp date / time separa to r ASCII char (DEC, 0 = none)
f i l e S p l i t S i z e = 20 ; F i l e s p l i t s i z e in MB (DEC, range : 1−512)
f i l e S p l i t T i m e = 0+0 ; F i l e s p l i t time in sec (DEC, 0+0 = none , range : 60−86400)
cyc l i cLogg ing = f a l s e ; De lete o l d e s t s to r ed f i l e when f u l l
cyc l i cLogg ingDataLimit = 0 ; Limit on t o t a l logged data in MB (DEC, 0 = none)

The [log] section specifies some general settings of the log file. The section contains the following
entries:

• loggerID: A logger identification string. The string is copied to the log file header such that
log files from different loggers can be identified. The string can be up to 15 characters long.

• loggingEnb: Sets the default logging state. If the default logging state is set to false, the
logger will not log messages until it has received a valid control signal enabling logging.

• valueSeparator: Specifies the separator symbol used in the log file. Each separator symbol
is represented by a value (ASCII). Valid symbol values are listed in Table 4.

• timestampFormat: Specifies the detail level of the timestamp used in the log file. Note that
a longer timestamp will take up more space and reduce maximum logging speed. The format
supports seven levels, from 0 to 6. Timestamp separators can be selected using the time
separators settings. The detail levels are listed below with kkk as milliseconds:

0. kkk

1. sskkk

2. mmsskkk

3. hhmmsskkk

4. DDhhmmsskkk

5. MMDDhhmmsskkk

6. YYYYMMDDhhmmsskkk

31

• timestampTimeSeparator: Specifies the time separator in the timestamp. Each separator
symbol is represented by a value (ASCII). Valid symbol values are listed in Table 4. Addi-
tionally, setting the separator to 0 will disable the separator. The separator will be inserted
into the timestamp as:
YYYYMMDDhhXmmXsskkk.

• timestampTimeMsSeparator: Specifies the millisecond separator in the timestamp. Each
separator symbol is represented by a value (ASCII). Valid symbol values are listed in Table
4. Additionally, setting the separator to 0 will disable the separator. The separator will be
inserted into the timestamp as:
YYYYMMDDhhmmssXkkk

• timestampDateSeparator: Specifies the date separator in the timestamp. Each separator
symbol is represented by a value (ASCII). Valid symbol values are listed in Table 4. Addi-
tionally, setting the separator to 0 will disable the separator. The separator will be inserted
into the timestamp as:
YYYYXMMXDDhhmmsskkk

• timeTimeDateSeparator: Specifies the date to time separator in the timestamp. Each
separator symbol is represented by a value (ASCII). Valid symbol values are listed in Table
4. Additionally, setting the separator to 0 will disable the separator. The separator will be
inserted into the timestamp as:
YYYYMMDDXhhmmsskkk

• fileSplitSize: Specifies the log file split size in MB. When the file split size is reached, a
new file is created, and the logging continues. The file split limit shall be in the range 1 -
512 MB.

• fileSplitTime: Specifies the time based log file period and offset in seconds. When the
time is reached, a new file is created, and the logging continues. Disable time based split
by entering 0+0. The split time field consists of a period time and an offset time separated
by ”+” (PERIOD+OFFSET). The period and offset are relative to midnight (00:00:00). The
OFFSET value shall be less than the PERIOD value.
Examples:

– 0+0: Time based file split disabled

– 60+0: Splits every minute, e.g. 12:00:00, 12:01:00 ...

– 120+0: Splits every even minute, e.g. 12:00:00, 12:02:00 ...

– 120+60: Splits every odd minute, e.g. 12:01:00, 12:03:00 ...

– 3600+0: Splits every hour, e.g. 12:00:00, 13:00:00 ...

– 3600+1800: Splits every hour with 30 min offset, e.g. 12:30:00, 13:30:00 ...

– 7200+0: Splits every even hour, e.g. 12:00:00, 14:00:00 ...

– 7200+3600: Splits every odd hour, e.g. 13:00:00, 15:00:00 ...

– 21600+0: Splits every 6 hours, 00:00:00, 06:00:00, 12:00:00 and 18:00:00

– 43200+0: Splits twice a day, 00:00:00 and 12:00:00

– 43200+21600: Splits twice a day with 6 hour offset, 00:06:00 and 18:00:00

– 86400+0: Splits each day at midnight, 00:00:00, 00:00:00 ...

– 86400+57600: Splits each day at 16:00:00

• cyclicLogging: Setting this entry to true enables cyclic logging mode. With cycling logging
mode enabled the oldest log files are deleted when the memory card becomes full - allowing
the logging to continue.

32

• cyclicLoggingDataLimit: Sets a limit to the total amount of data stored on the memory
card in MB. When the limit is reached, the oldest log files are deleted to keep the total
amount of data stored below the limit. The feature requires that cyclicLogging is enabled.
The limit shall be in range from 2 ∗fileSplitSize up to the total size of the memory card.
Disable the data limit by entering 0 (the total memory card size is used as limit).

Table of valid separator symbol values:

32: (space) 42: * 52: 4 62: > 72: H 82: R 92: \ 102: f 112: p 122: z
33: ! 43: + 53: 5 63: ? 73: I 83: S 93:] 103: g 113: q 123: {
34: ” 44: , 54: 6 64: @ 74: J 84: T 94: ˆ 104: h 114: r 124: |
35: # 45: - 55: 7 65: A 75: K 85: U 95: 105: i 115: s 125: }
36: $ 46: . 56: 8 66: B 76: L 86: V 96: ‘ 106: j 116: t 126: ˜
37: % 47: / 57: 9 67: C 77: M 87: W 97: a 107: k 117: u
38: & 48: 0 58: : 68: D 78: N 88: X 98: b 108: l 118: v
39: ’ 49: 1 59: ; 69: E 79: O 89: Y 99: c 109: m 119: w
40: (50: 2 60: < 70: F 80: P 90: Z 100: d 110: n 120: x
41:) 51: 3 61: = 71: G 81: Q 91: [101: e 111: o 121: y

Table 4: List of valid separators

Consider! not to use the value separator (valueSeparator) in the timestamp

Example 1 - Timestamp settings

timestampFormat = 2 ; mmsskkk
timestampTimeSeparator = 0 ; No separa to r
timestampTimeMsSeparator = 0 ; No separa to r
timestampDateSeparator = 0 ; No separa to r
timeTimeDateSeparator = 0 ; No separa to r

Using the above settings, the date and time 2016/06/05 12:30:45,525 will in the log file be formatted
as 3045525

These settings will result in a short timestamp suitable for high-frequency logging.

Example 2 - Timestamp settings

timestampFormat = 4 ; DDhhmmsskkk
timestampTimeSeparator = 0 ; No separa to r
timestampTimeMsSeparator = 0 ; No separa to r
timestampDateSeparator = 0 ; No separa to r
timeTimeDateSeparator = 84 ; ’T’ As date to time separa to r

Using the above settings, the date and time 2016/06/05 12:30:45,525 will in the log file be formatted
as 05T123045525

Note that these settings comply with the ISO 8601 time format standard.

Example 3 - Timestamp settings

timestampFormat = 6 ; YYYYMMDDhhmmsskkk
timestampTimeSeparator = 58 ; ’ : ’ As time separa to r
timestampTimeMsSeparator = 44 ; ’ , ’ As m i l l i s e c o n d separa to r
timestampDateSeparator = 47 ; ’/ ’ As date s epa ra to r
timeTimeDateSeparator = 32 ; ’ ’ (space) As date to time separa to r

Using the above settings, the date and time 2016/06/05 12:30:45,525 will in the log file be formatted
as 2016/06/05 12:30:45,525

Note that with these settings, the raw log file can be directly loaded into MS-Excel (assuming
that the MS-Excel decimal delimiter is set to ’,’).

33

Heartbeat signal:

[hear tbeat]
heartbeatEnb = f a l s e ; Enable heartbeat s i g n a l
extendedID = true ; Use extended 29 b i t message ID (2 . 0B)
msgID = 00435353 ; CAN message ID o f heartbeat s i g n a l (HEX)

The device can transmit a 1-second periodic heartbeat signal. The signal payload contains logging
state (enabled/disabled), the device wall time (if supported by the hardware) and space left on
the memory card in MB. The section contains the following entries:

• heartbeatEnb: Set to true to enable the periodic heartbeat signal.

• extendedID: If set to true, the signal message will be using extended ID format (29-bit).

• msgID: The message ID used for the heartbeat signal.

The interpretation of the 8-byte data payload of the heartbeat signal is given below:

Byte No. 0 1 2 3 4 5 6 7
Content 0xAA State Epoch time Space left

Byte 0 has the reserved value 0xAA. Multi-byte fields should be interpreted MSB (Most-Significant-
Byte) first.

Example - Heartbeat signal message

Byte No. 0 1 2 3 4 5 6 7
Content 0xAA 0x01 0x57 0x42 0x01 0x56 0x1D 0x93

Interpretation of example message payload:

• State (0x01): Logging state is active

• Epoch time (0x57420156): Device time in epoch format. Translates to 22/5/2016 18:58:30

• Space left (0x1D93): Space left on device is 7571 MB

Note! that the heartbeat signal will not be active until the logger has successfully received at least
one message from the bus.

The! use of the heart beat signal requires that the silent entry in the [CAN] section is set to
false.

It! is strongly recommended to disable the heartbeat signal in safety critical applications.

34

Control signal:

controlEnb = f a l s e ; Enable c o n t r o l s i g n a l
extendedID = true ; Use extended 29 b i t message ID (2 . 0B)
msgID = 00435354 ; CAN message ID o f c o n t r o l s i g n a l (HEX)

The device logging state (enabled/disabled) can be configured run-time using the control signal.
The control signal can be used to enable logging only when CAN-bus messages should be captured
and disable otherwise. Logging state is on power-on set as defined in the [log] section. The section
contains the following entries:

• controlEnb: Set to true to enable the control signal.

• extendedID: If set to true, the signal message will be using extended ID format (29-bit).

• msgID: The message ID of the control signal.

The control signal payload should be of length 1. The State byte is set to 0x01 to enable logging
and 0x00 to disable logging:

Byte No. 0
Content State

When the device receives a valid control message, it will immediately set the logging state accord-
ingly.

Care! should be taken when selecting a message ID of the control signal - if the message ID is used
for another purpose, it might result in unexpected behaviour.

CAN message data fields:

[da taF i e ld s] ; Data f i e l d s in l og f i l e
timestamp = true ; Log message timestamp
l o s t = f a l s e ; Log i f a message was l o s t
type = true ; Log type o f i d e n t i f i e r
id = true ; Log message ID
dataLength = f a l s e ; Log number o f message data bytes
data = true ; Log message data

The [dataFields] section specifies which message fields that should go into the log file. Each entry
can be set to either true or false. If an entry is set to true the message field will be included.
The section contains the following entries:

• timestamp: Include timestamp

• lost: Include lost flag

• type: Include message type

• id: Include message identifier

• dataLength: Include message length

• data: Include message data

Refer to Section 10.4 on page 22 for more information on the fields.

CAN-bus configuration:

[can] ; CAN bus c o n f i g u r a t i o n
b i t r a t e = 0 ; CAN−bus b i t r a t e (DECIMAL) , 0 = auto−det e c t
s i l e n t = f a l s e ; Listen−only mode

The [can] section specifies the CAN-bus settings. The section contains the following entries:

• bitrate: Specifies the bit rate of the CAN-bus (in bit/s). The value cannot exceed the
limits given in section 3 on page 2. If the value 0 is entered, the device will enable bit-rate
auto detection and attempt to detect the bit-rate of the CAN-bus.

35

• silent: When silent is set to true the device logs CAN-bus traffic without interfering with
the bus, i.e. the device does not acknowledge (ACK) messages placed on the CAN-bus by
other devices.

It! is strongly recommended to enable silent mode for safety critical systems!

The! automatic CAN-bus bit-rate detection mechanism requires that at least two nodes communi-
cate on the bus. The mechanism cannot be used if only the logger and a single node are connected
to the bus.

Channel configuration (same for channel 1 to 8):

[channel1] ; CAN channel 1 c o n f i g u r a t i o n
channelEnb = true ; Enable CAN channel
d e s t i n a t i o n = 3 ; 1 = Logger , 2 = I n t e r f a c e , 3 = Both
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
downSamplePrescaler = 1 ; Down−sampling p r e s c a l e r (DEC, range : 1−256)
f i l t e r i n g E n b = f a l s e ; Enable below message f i l t e r i n g
msgID = 00000000 ; Message ID f i l t e r (HEX)
msgIDMask = 1FFFFFFF ; Message ID f i l t e r mask (HEX) (0 i s i n v a l i d)

The [channelX] sections configure the channels and the associated message filtering. A CAN-
message will pass the filtering mechanism if the message ID is accepted by one of the four channel-
filters. The section contains the following entries:

• channelEnb: Sets the enabled/disabled state of the specific channel (true is enable)

• destination: Messages can either be logged (1), send to the interface (2) or both (3)

• extendedID: Sets the ID format used by the channel (true is extended format)

• downSamplePrescaler: Down-samples the data according to the prescaler value

• filteringEnb: Enables the filtering mechanism

• msgID: The filter message ID

• msgIDMask: The filter ID mask

The down-sample prescaler can be used to limit the number of messages which are logged to
the memory card. The prescaler down-samples incoming messages based on the message ID. A
prescaler value of 1 effectively disables the prescaler and passes all messages (which are accepted
by the channel filter). A prescaler value of 2 passes every second message with a specific message
ID. The maximum value of the prescaler is 256. The prescaler mechanism is limited to 10 unique
message IDs pr. channel. If more than 10 unique message IDs are received (and passed by the
filter) on a specific channel, then only the 10 first received unique message IDs are down-sampled
according to the prescaler value - the remaining messages are all passed (as if the prescaler is 1).

A filter is configured using a message ID-filter field (msgID) and a mask field (msgIDMask), both
values are set as HEX values in the configuration. Both the ID-filter and the mask work on a
bitwise level. The configuration of the filters is described in detail below.

In! the design of the filters it is helpful to use a tool which converts from and to binary, decimal
and hexadecimal and which can perform the bitwise AND operation used in the filtering.

Below a few examples demonstrate the use of filters. The examples use xy to indicate the number
base, where y = 2 is binary, y = 10 is decimal and y = 16 is hexadecimal. Additionally ”&” is
used as a bitwise AND operation.

Example 1 - Filter configuration which accepts one specific message ID: 200010 = 111110100002

The filter is set to the value of the message to accept. The mask is set to all ones, such that all
bits of the filter are considered, as given in (1).

36

Filter
Mask
Masked filter

111110100002
&111111111112

111110100002

(1)
ID
Mask
Masked ID

111110100002
&111111111112

111110100002

(2)

To test if the message passes the filter, we apply the mask to the message ID as given in (2). The
masked filter and the masked ID are the same - the message will pass the filter.

The corresponding configuration of channel 1 is (note that the configuration uses HEX format):

[channel1]
channelEnb = true ; The channel i s enabled
d e s t i n a t i o n = 1 ; The messages are logged
extendedID = f a l s e ; The message uses 11 b i t ID
downSamplePrescaler = 1 ; Down−sampling d i s ab l ed
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = 7D0 ; Message ID f i l t e r (HEX)
msgIDMask = 7FF ; Message ID f i l t e r mask (HEX)

Note that the HEX value 7FF is simply 11 ones in binary - which is the ID bit-length of a standard
CAN-message (11-bit identifier).

Example 2 - Filter configuration which accepts two message IDs: 200010 = 111110100002 and
200110 = 111110100012

Note that the two binary numbers are identical except for the rightmost bit. To design a filter
which accepts both IDs, we can use the mask field to mask out the rightmost bit - such that it is
not considered when the filter is applied.

In (3) the mask is set such that the rightmost bit is not considered (indicated in red).

Filter
Mask
Masked filter

111110100002
&111111111102

111110100002

(3)
ID
Mask
Masked ID

111110100012
&111111111102

111110100002

(4)

To test if the messages pass the filter, we apply the mask to the message ID 111110100012 as
given in (4). The masked filter and the masked ID are the same - the message will pass the filter.
Note that both 111110100002 and 111110100012 can pass the filter, as the rightmost bit is not
considered by the filter (the rightmost bits are masked out).

Example 3 - J1939 - Filter configuration which accepts PGN 61444 (EEC1) messages:

J1939 message frames use 29-bit CAN-IDs. The Parameter Group Number (PGN) is defined by
18 of the 29 bits. The remaining 11 bits define the priority and source address of the message. It
is often useful to configure a filter to accept a specific PGN regardless of the source address and
the priority - this can be done using the filter mask (to ignore the source and priority).

Below, the left red bits represent the 3-bit priority, the green bits the 18-bit PGN and the right
red bits the 8-bit source address of the 29-bit CAN-ID.

000111111111111111111000000002 = 3FFFF0016 (5)

Message ID bits in positions with zero bits in the msgIDMask are ignored. By using 3FFFF0016 as
msgIDMask, the source and priority are ignored.

To specifically accept PGN 61444 (F00416) messages, the msgID is set to F0040016 - note the the
final 8-bit (0016) represents the source address which are ignored by the msgIDMask (these can be
set to any value).

Below, channel 1 is configured to accept PGN 61444:

37

[channel1]
channelEnb = true ; The channel i s enabled
d e s t i n a t i o n = 1 ; The messages are logged
extendedID = true ; The message uses 29 b i t ID
downSamplePrescaler = 1 ; Down−sampling d i s ab l ed
f i l t e r i n g E n b = true ; Enable below message f i l t e r i n g
msgID = F00400 ; Message ID f i l t e r (HEX)
msgIDMask = 3FFFF00 ; Message ID f i l t e r mask (HEX)

The filter mask (msgIDMask) 3FFFF0016 can be used for all J1939 PGN messages. To accept
specific PGNs, the msgID is adjusted. To accept one specific PGN (as in the example above), the
msgID is set to the specific PGN (in HEX) with 0016 appended to represent the ignored source
address field.

The above examples demonstrate very simple uses of the channel filters. The filter and mask fields
can be used to design more advanced filters to meet specific needs.

The four channels can each be configured using a filter and a mask. If a message passes one of
the channel filters, it will be accepted. As indicated above, the filters can each be set to accept
specific messages or a range of messages using the mask.

It! is recommended to filter out all unwanted messages. By filtering out unwanted messages, the
risk of losing wanted messages becomes lower, and the logger will be able to log for a longer period
before it runs out of storage memory.

Configuration of transmit messages:

[t ransmit1] ; Transmit message 1
d e s t i n a t i o n = 0 ; 0 = None , 1 = Logger , 2 = I n t e r f a c e , 3 = Both
per iod = 100 ; Period in ms (DEC, 10 ms r e s o l u t i o n)
de lay = 0 ; Delay in ms (DEC, 10 ms r e s o l u t i o n)
extendedID = f a l s e ; Use extended 29 b i t message IDs (2 . 0B)
msgID = 00000001 ; Transmit message ID (HEX)
msgData = {0102030405060708} ; Message data (HEX)

The [transmitX] sections configure up to 20 transmit messages. The sections shall be named
”transmit1” through ”transmit20”. Each section shall include all configuration fields given above.
Transmit messages are transmitted on the CAN-bus by the CLX000 and can be setup to be either
single shot or periodic. A transmit configuration is enabled by adding a [transmitX] section with
fields to the config file and disabled by deleting the section.

Note! that the default configuration file contains a commented-out transmit message configura-
tion. Remove the leading ”;” comment markers to activate the configuration.

• destination: The destination of the transmit message, none (0), logger (1), interface(2),
both (3). Note that all transmit messages are transmitted on the CAN-bus, regardless of
the destination value

• period: Transmit period in steps of 10 ms in range 10 - 4294967290 ms (max ≈ 50 days).
If set to zero, the message will be transmitted only once (single shot)

• delay: Delay time in ms in steps of 10 ms can be used to offset messages with the same
period or to delay single shot messages. The delay shall be less than the set period

• extendedID: Use extended 29 bit message IDs (2.0B)

• msgID: Message ID

• msgData: Message data bytes as hexadecimal values enclosed by curly brackets. 0-8 data
bytes can be set

Make! sure to change the section name when adding new transmit messages, e.g.: [transmit1],...
[transmit2], etc.

Example 1 - One single shot message

38

[t ransmit1]
d e s t i n a t i o n = 3
per iod = 0
delay = 6000
extendedID = f a l s e
msgID = 00000001
msgData = {01}

The period is set to zero to configure the transmit message as a single shot. With delay set to
6000, the single shot message is delayed 60 sec after power up. The message type is standard, the
ID is 1, and the message data holds a single byte, 0x01.

Example 2 - Multiple periodic messages

[t ransmit1]
d e s t i n a t i o n = 3
per iod = 100
de lay = 0
extendedID = f a l s e
msgID = 00000001
msgData = {AA}

[t ransmit2]
d e s t i n a t i o n = 3
per iod = 100
de lay = 20
extendedID = f a l s e
msgID = 00000002
msgData = {AABB}

[t ransmit3]
d e s t i n a t i o n = 3
per iod = 100
de lay = 40
extendedID = f a l s e
msgID = 00000003
msgData = {AABBCCDD}

[t ransmit4]
d e s t i n a t i o n = 3
per iod = 100
de lay = 60
extendedID = f a l s e
msgID = 00000004
msgData = {AABBCCDDEE}

[t ransmit5]
d e s t i n a t i o n = 3
per iod = 100
de lay = 80
extendedID = f a l s e
msgID = 00000005
msgData = {AABBCCDDEEFF}

Five periodic transmit messages are each set with a period of 100 ms. The messages are delayed in
time by 20 ms each. Below timeline shows the IDs of the transmit messages given the configuration
above:

ID

Time [ms]

1

0 10

2

20 30

3

40 50

4

60 70

5

80 90

1

100 110

Real-time-clock (RTC) configuration:

[RTC] ; Real Time Clock
epochTime = 0 ; Epoch time (0 to keep cur rent time)
adjustment = 0 ; Adjustment in sec to cur rent time (max +−129600 sec)

39

The [RTC] section configures the real-time-clock of the device. The real-time-clock enables the
CLX000 to add wall-time timestamps to log files, such that the absolute date and time of a message
can be determined from the log file. The section contains the following entries:

• epochTime: The field is used to set the time in case time stored in the CLX000 is lost. The
field uses the epoch time format. When set to 0, the CLX000 will keep the currently stored
time.

• adjustment: The field is used to adjust the device time. The adjustment is in seconds and
can be in range ±129600s (±36h)

When the RTC is available on the hardware, the device will be able to maintain the wall time
even when it is not connected to an external power source. If the time maintained by the device
has to be adjusted (e.g. to local time zones), this can be done using the adjustment configuration
entry. In case the time is completely lost (e.g. due to the replacement of the internal battery)
or if it cannot be sufficiently adjusted using the range of the adjustment entry, the time can be
set using the epochTime entry. When epochTime is set to a value different from zero, the value
will be loaded into the time stored by the device. When the time has been set, the entry should
be reset to 0 to avoid the time being set each time the device is powered on. Several tools exist
which can be used to convert to the epoch time format.

If! the device time needs only minor adjustments, use the adjustment field and leave epochTime

to 0.

Note! that the CL3000 can auto-sync the RTC clock with a remote server. If the auto-sync feature
is enabled, the epochTime shall be set to 0. For more on auto-sync, refer to the WIFI configuration
section.

Wireless connectivity configuration:

The [WIFI] section configures the wireless connectivity of the device. Some fields have multiple
uses depending on the setting of the appMode field.

[WIFI]
appName = id0001 ; App l i ca t ion name (1−15 c h a r a c t e r s)
appMode = 4 ; WIFI mode (4 = Access Point , 5 = Stat i on)
appSSID = id0001 ; WIFI SSID (1−32 c h a r a c t e r s)
appNetworkKey = 12345678 ; WIFI password (8−32 c h a r a c t e r s)
httpdMode = 0 ; Use a c c e s s au then t i c a t i on (0 = no , 1 = yes)
httpdUser = user ; Access au then t i c a t i on user name (0−32 c h a r a c t e r s)
httpdPass = 12345678 ; Access au then t i c a t i on password (0−32 c h a r a c t e r s)
rtcSyncEnb = f a l s e ; Enable i n t e r n a l c l o ck auto sync
rtcSyncAddr = goog le . com ; I n t e r n a l c l o ck auto sync s e r v e r address (0−32 c h a r a c t e r s)

• appName: The application network name

• appMode: The WiFi mode, either Access Point (4) or Station (5)

• appSSID: Multipurpose field depending on the value of appMode

– appMode = 4: The WiFi SSID of the network created by the CLX000

– appMode = 5: The WiFi SSID of an existing network the CLX000 will attempt to connect
to

• appNetworkKey: Multipurpose field depending on the value of appMode

– appMode = 4: The WiFi password of the network created by the CLX000

– appMode = 5: The WiFi password of an existing network the CLX000 will attempt to
connect to (can be hidden, refer to below)

• httpdMode: The security method used by the CLX000 web server. Access authentication can
be disables (0) or enabled (1)

• httpdUser: The user name required if access authentication is enabled

40

• httpdPass: The password required if access authentication is enabled (can be hidden, refer
to below)

• rtcSyncEnb: Sets the enable/disable state of RTC auto-sync service (true is enable, false
is disable)

• rtcSyncAddr: HTTP server address of the remote server used to synchronize the internal
time, 0-32 characters.

The appName becomes the device network name and can be used to access the device on a network.
If appName is e.g. set to id0001, then the main web page can be access on http://id0001/ from
a web browser.

Using the access authentication feature, the web server can be user name and password protected.
This is particularly useful if the device is used in station mode on a shared network.

The rtcSync fields can be used to setup the CLX000 to get time from a remote HTTP server. The
time is taken from the HTTP response header. The supported header Date format is: Sun, 06

Nov 1994 08:49:37 GMT. The synchronization mechanism will accept HTTP response codes in
interval 200 to 499.

The HTTP server address can be specified using either domain-name or IP-address. In addition,
port and file can be specified. Port 80 is used if no port is specified. The following rtcSyncAddr

formats are all valid: google.com, 192.168.1.1, 192.168.1.1/time.html, 192.168.1.1:8080,
192.168.1.1:8080/time.html.

When the RTC auto-sync is running, the CLX000 will attempt to synchronize the time approxi-
mately once each hour. When a new time is received, it will be activated after next power-cycle.

In! station mode (appMode = 5), the appNetworkKey and httpdPass values can be hidden by
replacing the values with ”asterisk”-characters of equal length (e.g. the value ”secret” can be
replaced with ”******”) when the values have been successfully loaded by the CLX000 at least
once.

The! device web page can be accessed using the appName from a web browser, e.g. http://id0001/

With! RTC sync feature it is preferable that a small HTTP body is returned.

With! RTC sync feature it is not necessary to refer to an existing web-page, e.g. a response code
404 (page-not-found) header can also be used for synchronization.

Note! that a non-responsive RTC sync server will delay e.g. the FTP push service (5 min timeout).

File Transport Protocol (FTP) configuration:

The [FTP] section configures the FTP push service. The push service allows the CLX000 to
automatically push closed log files to a remote FTP server.

[FTP]
ftpEnb = f a l s e ; Enable FTP upload s e r v i c e
serverAddr = 1 9 2 . 1 6 8 . 1 . 1 ; Hostname / IP o f the FTP s e r v e r (0−32 c h a r a c t e r s)
s e rv e rD i r = / ; Di rec to ry on FTP s e r v e r (0−32 c h a r a c t e r s)
user = user ; FTP user name (0−32 c h a r a c t e r s)
pwd = 12345678 ; FTP password (0−24 c h a r a c t e r s)

• ftpEnb: Sets the enable/disable state of the FTP push service (true is enable, false is
disable)

• serverAddr: The address of the remote FTP server. Can be either an IP-address or a
hostname.

• serverDir: The upload directory of the FTP server (”/” is the root folder)

• user: The FTP login user name

• pwd: The FTP login user password

41

Refer to section 9.2 on page 17 for more information on the FTP push service.

The! pwd value can be hidden by replacing it with ”asterisk”-characters of equal length (e.g. the
value ”secret” can be replaced with ”******”) when the value has been successfully loaded by the
CLX000 at least once.

Example 1 - Server IP-address

[FTP]
ftpEnb = true
serverAddr = 216 . 58 . 213 . 195
s e rv e rD i r = / l o g f i l e s /
user = can logge r
pwd = fudesp4KeH7r

The FTP server is specified using an IP-address. Log files are uploaded to the directory ”logfiles”
located on the FTP server.

Example 2 - Server hostname

[FTP]
ftpEnb = true
serverAddr = somecompany . com
se rve rD i r = /
user = can logge r
pwd = fudesp4KeH7r

The FTP server is specified using a hostname. Log files are uploaded the root directory of the
FTP server.

42

12 Troubleshooting

TC.1 In case of a fault with the internal memory please make sure to allow the device to properly
power-down before re-applying power (>20sec). If the power is re-applied too fast, the device
may not initialise properly. If the fault persists, make sure that the internal memory card
is properly inserted in the connector slot.

43

	About This Document
	Introduction
	Technical Specification
	Modes of Operation
	Connection & Installation
	Memory Card Installation
	Device Firmware Upgrade
	Serial Interface
	Wireless Connectivity
	Log File Format
	Device Configurations
	Troubleshooting

