
CANedge2 GNSS Docs
Release FW 01.07.05

CSS Electronics

Dec 05, 2023

CONTENTS

0.1 CANedge2 GNSS documentation . 1
0.1.1 About this manual . 1
0.1.2 Legal information . 2

0.2 Specification . 4
0.2.1 Logging . 4
0.2.2 Real-time clock (RTC) . 4
0.2.3 CAN-bus (x2) . 4
0.2.4 LIN-bus (x2) . 5
0.2.5 GNSS . 6
0.2.6 Connectivity . 6
0.2.7 Electrical . 7
0.2.8 Mechanical . 7

0.3 Hardware . 8
0.3.1 Installation . 8
0.3.2 Connector . 9
0.3.3 LED . 11
0.3.4 SD-card . 12
0.3.5 Enclosure . 13
0.3.6 Label . 13

0.4 Configuration . 15
0.4.1 General . 15
0.4.2 Logging . 18
0.4.3 Real-Time-Clock . 21
0.4.4 Secondary port . 24
0.4.5 CAN . 25
0.4.6 LIN . 50
0.4.7 GNSS . 56
0.4.8 Connect . 65

0.5 Filesystem . 74
0.5.1 Device file . 74
0.5.2 Log file . 75
0.5.3 Replacing SD-card . 79
0.5.4 Setting session counter . 79

0.6 Internal signals . 80
0.6.1 Messages . 80
0.6.2 Signals . 80

0.7 Firmware . 87
0.7.1 Download Firmware Files . 87
0.7.2 Firmware versioning & naming . 87
0.7.3 Firmware Update . 87

i

ii

CANedge2 GNSS Docs, Release FW 01.07.05

0.1 CANedge2 GNSS documentation

0.1.1 About this manual

0.1.1.1 Purpose

This manual describes the functionality of the CANedge2 GNSS (firmware 01.07.05) with focus on:

1. Hardware & installation

2. Configuration

3. Firmware upgrade

This manual does not provide details on available software/API tools.

Note: Most of the information contained in this manual is found in the configuration sections.

0.1.1.2 Notation used

The following notation is used throughout this documentation:

Admonitions

Note: Used to highlight supplementary information

Warning: Used if incorrect use may result in unexpected behaviour

Danger: Used if incorrect use may result in damage to the device or personal injury

Number bases

When relevant, the base of a number is written explicitly as 𝑥𝑦, with 𝑦 as the base.

The following number bases are used throughout this documentation:

• Binary (𝑦 = 2). Example: The binary number 10101010 is written as 101010102

• Decimal (𝑦 = 10). Example: The decimal number 170 is written as 17010

• Hexadecimal (𝑦 = 16). Example: The hexadecimal number 𝐴𝐴 is written as 𝐴𝐴16

The value of a number is the same regardless of the base (e.g. the values in above examples are equal
101010102 = 17010 = 𝐴𝐴16). However, it is sometimes more convenient to represent the number using a
specific base.

0.1. CANedge2 GNSS documentation 1

CANedge2 GNSS Docs, Release FW 01.07.05

0.1.2 Legal information

0.1.2.1 Usage warning

Warning: Carefully review the below usage warning before installing the product

The use of the CANedge device must be done with caution and an understanding of the risks involved.
The operation of the device may be dangerous as you may affect the operation and behavior of a data-bus
system.

Improper installation or usage of the device can lead to serious malfunction, loss of data, equipment
damage and physical injury. This is particularly relevant when the device is physically connected to an
application that may be controlled via a data-bus. In this setup you can potentially cause an operational
change in the system, turn on/off certain modules and functions or change to an unintended mode.

While the device supports a high degree of security in regards to wireless data transfer and over-the-air
updates, it is recommended that these features are used with caution. Incorrect usage of this functionality
can result in a device being unable to connect to your server. Further, changing e.g. transmit messages
over-the-air should be done with extreme caution.

The device should only be used by persons who are qualified/trained, understand the risks and understand
how the device interacts with the system in which it is integrated.

0.1.2.2 Terms & conditions

Please refer to our general terms & conditions.

0.1.2.3 Electromagnetic compatibility

The CANedge has been tested in accordance with CE, FCC and IC standards.

Certificates are available in the online documentation.

The CANedge2 GNSS includes the following pre-certified wireless module: ATWINC1500U. Note that
the ATWINC15x0-MR210UB module has been tested with an external whip antenna with a gain of
2.2dBi.

The device is in conformity with all provisions of Annex II of Council Directive 2014/30/EU, in its latest
amended version, referred to EMC directive.

The device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesired operation.

The device complies with the requirements set forth in the Innovation, Science and Economic Develop-
ment Canada (ISED) Rules and Regulations ICES-003 Class B and the measurement procedure according
to CAN/CSA CISPR 22-10.

Specifically, it is in conformity with the following standards:

EN 55032:2015 - Electromagnetic Compatibility of Multimedia Equipment
EN 55024:2010+A1:2015 - IT equipment. Immunity characteristics. Limits and methods of␣

→˓measurement
FCC Rules and Regulations Part 15 Subpart B: 2018
ICES-003: Issue 6 January 2016

2 CONTENTS

https://www.csselectronics.com/policies/terms-of-service
https://www.microchip.com/wwwproducts/en/ATWINC1500

CANedge2 GNSS Docs, Release FW 01.07.05

0.1.2.4 Voltage transient tests

The CANedge has passed below ISO 7637-2:2011 tests, performed by TÜV SÜD1:

ISO 7637-2:2011: Voltage transient emissions test on supply lines
ISO 7637-2:2011: Transient immunity test on supply lines

0.1.2.5 Contact details

For any questions regarding our products, please contact us:

CSS Electronics
EU VAT ID: DK36711949
Soeren Frichs Vej 38K (Office 35), 8230 Aabyhoej, Denmark
contact[AT]csselectronics.com
+45 91252563
www.csselectronics.com

1 Test performed using the hardware version ≤ 00.02 enclosure

0.1. CANedge2 GNSS documentation 3

https://www.csselectronics.com

CANedge2 GNSS Docs, Release FW 01.07.05

0.2 Specification

0.2.1 Logging

• Storage

– Extractable industry grade micro SD-card (8-32GB)

– Standard FAT file system (can be read directly by a PC)

– Logging to industry standard .MF4 (ASAM MDF4) file format

• Organization

– Log files grouped by session (power cycle)

– Log files split based on file configurable size or time

– Optional cyclic-logging mode (oldest log file is deleted when memory is full)

• Performance

– Simultaneous logging from 2 x CAN-bus + 2 x LIN-bus

– Message time stamping with 50 us resolution

– High message rate1

– Optional data compression (LZSS)

• Security

– Globally unique device ID with customizable device name

– Power safe (device can be disconnected during operation without risk of data corruption)

– Optional end-2-end data encryption (AES128-GCM)

0.2.2 Real-time clock (RTC)

• High precision real-time clock retains date and time when device is off

• The real-time clock can be automatically synced from various sources2

0.2.3 CAN-bus (x2)

• Physical

– Two physical CAN-bus interfaces

– Industry standard DB9 (D-sub9) connectors

• Transceiver

– Compliant with CAN Protocol Version 2.0 Part A, B and ISO 11898-1

– Compliant with ISO CAN FD and Bosch CAN FD

– Ideal passive behavior when unpowered (high impedance / no load)

– Protection: ±16kV HBM ESD, ±15kV IEC ESD, ±70 V bus fault, short circuit

– Common mode input voltage: ±30V

– TXD dominant timeout (prevents network blocking in the event of a failure)
1 See the performance tests
2 Synchronization sources depend on device variant. See configuration section for more information

4 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

– Data rates up to 5Mbps3

• Controller

– Based on MCAN IP from Bosch

– Bit-rate: Auto-detect (from list4), manual simple (from list5) or advanced (bit-timing)

– 128 standard CAN ID + 64 extended CAN ID filters (per interface)

– Advanced filter configuration: Range, mask, acceptance, rejection

– Configurable transmit messages, single shot or periodic (up to 128/64 regular/extended)

– Message down-sampling based on:

∗ Count

∗ Time

∗ Change in data

– Support for Remote-Transmission-Request (RTR) frames

– Silent modes: Restricted (acknowledge only) or monitoring (transmission disabled)

– Supports all CAN based protocols (J1939, CANopen, OBD2, NMEA 2000, . . .)6

• Application

– Cross-channel control-message for start/stop of reception/transmission

– Heartbeat-message to broadcast device time, space left on SD-card and reception/transmission
state

0.2.4 LIN-bus (x2)

• Physical

– Two physical LIN-bus interfaces

– Industry standard DB9 (D-sub9) connectors

– No internal diode and resistor for publishing mode

• Transceiver

– Protection: ±8kV HBM ESD, ±1.5kV CDM, ±58V bus fault

– Supports 4V to 24V applications

– TXD dominant timeout (prevents network blocking in the event of a failure)

– Data rates up to 20kbps

• Controller

– Support for both publisher and subscriber modes

– Automatic7 and custom frame lengths

– Classic and Extended checksum formats

– Configurable transmit messages, single shot or periodic
3 Supported FD bit-rates: 1M, 2M, 4M
4 Bit-rate list: 5k, 10k, 20k, 33.333k, 47.619k, 50k, 83.333k, 95.238k, 100k, 125k, 250k, 500k, 800k, 1M
5 Bit-rate list: 5k, 10k, 20k, 33.333k, 47.619k, 50k, 83.333k, 95.238k, 100k, 125k, 250k, 500k, 800k, 1M, 2M, 4M
6 The device logs raw data frames
7 Data lengths are defined by bits 4 and 5 of the LIN identifier

0.2. Specification 5

CANedge2 GNSS Docs, Release FW 01.07.05

0.2.5 GNSS

• Concurrent GNSS receiver module supporting: GPS, GLONASS, Galileo and BeiDou

• Inertial Measurement Unit (IMU)

• Support for sensor-fusion, combining GNSS and IMU data for improved navigation performance17

• Automatic alignment estimation17

• Cold-start time-to-first-fix: ~25 s

• Horizontal accuracy (CEP)18: ~1.5 m

• Position error during GNSS loss: 10 %19

• Outputs (see Internal signals)

– Status (5 Hz)

– Time (5 Hz)

– Position (5 Hz)

– Altitude (5 Hz)

– Attitude (5 Hz)

– Distance travelled (1 Hz)

– Speed (5 Hz)

– Geofence status (1 Hz)

– IMU data (5 Hz)20

0.2.6 Connectivity

• Physical

– SMA connector for external antenna8

– The included dipole antenna has a max gain of 2dBi

• WiFi

– Single-band 2.4 GHz

– Supports IEEE 802.11 b/g/n

– Supports channels: 1-11

– WiFi module certified in USA, Canada, Europe, Japan, Korea, China, India, Taiwan

– Supports “open” and WPA/WPA2 security settings

– Configurable prioritized list of 1-4 WiFi access points

• Security

– Secure file transfer using TLS 1.2

– Credentials stored on the device can be encrypted

• File transfer (S3)

– HTTP/HTTPS file transfer
17 Automotive applications only
18 Circular Error Probability, 50%, 24 hours static, >6 satellites
19 Assumes sensor-fusion enabled. Error as a percentage of distance of traveled
20 IMU data includes 3 x acceleration + 3 x angular-rate, with the angular-rate output pending future firmware update

8 See the installation section for details on e.g. exchanging the antenna

6 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

– S3 transfer protocol1011

– Log files automatically offloaded to server

– OTA firmware updates (no need for proprietary software)

– OTA configuration updates (no need for proprietary software)

0.2.7 Electrical

• Device supply

– Channel 1 (CH1) voltage supply range: +7.0 V to +32 V DC21

– Reverse voltage protection22

– Transient voltage event protection on supply lines23

– Consumption: 1.0 W24

• Secondary port output supply25

– Channel 2 (CH2) fixed 5 V output supply (up to 1 A)26

– Supports power out scheduling to control the output state based on time of day

0.2.8 Mechanical

• Status indicated using external LEDs

• Robust and compact aluminum enclosure

• Operating temperature: -25 °C to +70 °C

• Hardware version 00.03:

– Dimensions: 44.2 x 75.0 x 20.0 mm (L x W x H)27

– Weight: ~ 90 g28

10 Open S3 API allows automated management of server objects
11 Can be used with Amazon Web Services S3, Google Cloud, Microsoft Azure (via gateway) and several self-hosted

open source solutions
21 The device is supplied trough connector 1 (CH1)
22 Up to 24V
23 The transient voltage protection is designed to clamp low energy voltage events. High energy voltage events may

overheat and destroy the input protection
24 Peak consumption during logging and active network connectivity (if supported)
25 Can be used to supply external devices
26 The 5V output can be used to power WiFi hotspots, sensors, small actuators, external LEDs, etc.
27 Excluding any external antennas and flanges
28 Excluding any external antennas

0.2. Specification 7

CANedge2 GNSS Docs, Release FW 01.07.05

0.3 Hardware

0.3.1 Installation

This section outlines the installation requirements that shall be satisfied.

0.3.1.1 Supply quality

The nominal voltage shall be kept within specifications at all times. The device is internally protected
against low energy voltage events which can be expected as a result of supply wire noise, ESD and
stub-wire inductance.

If the supply line is shared with inductive loads, care should be taken to ensure high energy voltage events
do not reach the device. Automotive environments often include several sources of electrical hazards,
such as load dumps (disconnection of battery while charging), relay contacts, solenoids, alternator, fuel
injectors etc. The internal protection circuitry of the device is not capable of handling high energy
voltage events directly from such sources.

0.3.1.2 Grounding

ISO 11898-2 tolerates some level of ground offset between nodes. To ensure the offset remains within
range, it is recommended to use a single point ground reference for all nodes connected to the CAN-bus.
This may require the ground wire to be carried along with data wires.

If a secondary CAN-bus network is connected to Channel 2, care must be taken to ensure that the ground
potentials of the two networks can safely be connected through the common ground in the device.

0.3.1.3 Cable shielding

Shielding is not needed in all applications. If shielding is used, it is recommended that a short pig-tail
be crimped to the shield end at each connector.

0.3.1.4 CAN ISO 11898-2

ISO 11898-2 defines the basic physical requirements of a high-speed CAN-bus network. Some of these
are listed below:

• Max line length (determined by bit-rate)

• Line termination (120 ohm line termination at each end of data line)

• Twisted data lines

• Ground offsets in range -2V to +7V

0.3.1.5 CAN-bus stub length

It is recommended that the CAN-bus stub length is kept short. The stub length is defined as the length
from the ”main” data line wires to the connection point of the CAN-bus nodes.

8 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

0.3.1.6 Mounting

The device should be mounted in a way that minimizes vibration exposure and accounts for the IP-rating
of the device.

Hardware version ≥ 00.03 uses flanges for easy and robust mounting. The flanges are designed for 4 x
M3 screws and 4 x 6 mm washers.

Mounting template (PDF)

0.3.2 Connector

This section contains information on the device connectors.

0.3.2.1 Pinout

The CANedge uses two D-sub9 connectors for supply, 2 x CAN, 2 x LIN, and 5 V output.

Fig. 1: Front view. Hardware version 00.03.

0.3. Hardware 9

CANedge2 GNSS Docs, Release FW 01.07.05

Pin # Channel 1 (CH1) Channel 2 (CH2)
1 NC 5V Supply Output
2 CAN 1 L CAN 2 L
3 GND GND
4 LIN Data 1 LIN Data 2
5 NC NC
6 GND (optional) GND (optional)
7 CAN 1 H CAN 2 H
8 NC NC
9 Supply & LIN1 VBAT LIN2 VBAT

Supply

The supply (CH1 pin 9) is used to power the device. The supply is internally protected against reverse
polarity and low-energy voltage spikes.

Refer to the Electrical Specification for more details on the device supply.

Warning: The supply line must be protected against high-energy voltage events exceeding device
limits

GND

All GND (ground) pins are connected internally.

5 V Supply Output

The +5 V output can be used to power external devices. The power can be toggled via the device
configuration. The output can deliver 1.5 A @ 5 V continuously.

Danger: Connecting external input power to this pin can permanently damage the device

Warning: External protection (such as clamp diodes) must be installed if inductive loads are con-
nected to the 5V Supply Output

CAN L/H

Warning: CAN-bus requires no common reference (ground). However, it is recommended that
GND (ground) is carried along with CAN-L/H to prevent that the common-mode voltage is exceeded
(resulting in transceiver damage)

LIN VBAT

The LIN-bus positive reference. Supports systems operating from 4V to 24V.

• LIN1 VBAT: Pin is shared with device supply and shares the supply input protection circuit

10 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

• LIN2 VBAT: Tolerates voltage spikes up to 48V. Spikes above this can damage the interface

LIN Data

LIN-bus single-wire data line referenced to LIN VBAT.

0.3.2.2 Wiring example

Below example illustrates how the CANedge CAN-bus 1 (channel 1) can be connected.

o--o--------------------o------------ ... ---o-----------o CAN 1 H (pin 7)
| | | | |

+++ | | | +++
|R| | | | |R|
+++ | | | +++
| | | | |
o-----------o--------------------o--- ... ------------o--o CAN 1 L (pin 2)

|CANedge | | Node 1 | | Node N |
+--+--------+--+ +--+--------+--+ +--+--------+--+
CANH CANL		CANH CANL		CANH CANL
Supply GND		Supply GND		Supply GND
+--+--------+--+ +--+--------+--+ ... +--+--------+--+

| | | | | |
o--------------------o------------ ... ---o-----------o SUPPLY (pin 9)

| | |
o--------------------o--- ... ------------o--o GND (pin 3)

0.3.3 LED

This section contains information on the device LEDs.

The LEDs are located at the back of the device as illustrated below.

Fig. 2: Back view. Hardware version 00.03.

LED Short Name LED Color Main Function
PWR Green Power
CH1 Yellow Bus activity on connector 1

(CH1)
CH2 Yellow Bus activity on connector 2

(CH2)
MEM Red Memory card activity
GPS Blue GNSS status
WFI Blue WiFi status

0.3. Hardware 11

CANedge2 GNSS Docs, Release FW 01.07.05

0.3.3.1 PWR

The Power LED is constantly on when the device is in normal operation. An exception is when the
firmware is being updated (for more information see Firmware).

0.3.3.2 CH1 / CH2

The Channel 1/Channel 2 LEDs indicate bus activity on Channel 1 and 2 respectively.

0.3.3.3 MEM

The Memory LED indicates activity on the memory card. Config file parsing, message logging, file
upload etc. all generate activity on the memory card.

0.3.3.4 GPS

The GPS LED indicates the status of the GNSS receiver:

• Constant off: Initializing

• Constant on: Waiting for fix

• Flashing (1Hz): Fix obtained

Note: The initialization step can take several seconds depending on the device configuration.

0.3.3.5 WFI

The WiFi LED is on when the device is connected to a WiFi access point.

Note: The device only connects to WiFi when a network task is pending and is otherwise disconnected
(LED off)

0.3.4 SD-card

The CANedge uses an extractable SD-card to store the file system (see Filesystem for more information).

See Replacing SD-card for information on how to replace the SD-card.

Warning: Never extract the SD-card while the device is on. Remove power first and wait a few
seconds for the device to turn off.

12 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

0.3.4.1 Type

The CANedge uses a specifically selected industrial grade SD-card with special timing constraints to
ensure safe shutdown when power is lost.

Warning: The device cannot be guaranteed to work if the pre-installed SD-card is replaced by a
card of another type.

0.3.4.2 Lifetime

SD-card memory wears as any other flash based memory. The industrial grade SD-card provided with
the CANedge has the following guaranteed minimum endurance numbers:

Size [GB] TBW1 Lifetime @ 1MB/sec [years]2 Lifetime @ 1MB/min [years]
8 24 0.8 47.9
32 96 3.2 191.5

0.3.5 Enclosure

This section contains information on the device enclosure.

Warning: Opening the enclosure can permanently damage the device due to e.g. ESD (electrostatic
discharge) - and improper handling may void the warranty

0.3.5.1 Technical drawings

PDF drawings and 3D STEP files can be found in the online documentation.

0.3.6 Label

This section contains information on the device label.

Note: The QR-code can be scanned to simplify installation of a new device

A unique label is attached to each device. Examples of the labels are illustrated below.
1 TBW: Terabytes Written
2 A constant logging rate of 1 MB/sec is likely much much higher than in any practical logging use-case

0.3. Hardware 13

CANedge2 GNSS Docs, Release FW 01.07.05

0.3.6.1 Hardware version 00.03

The label contains the following information:

• Unique device ID: EA9B650D

• Hardware version: 00.03

• Production date in format YYYYWW (WW = week number): 202301

• QR-code containing production date, device ID and the WiFi MAC address: 202301;EA9B650D;
F8F005E40ED6

• FCC ID of internal WiFi controller: 2ADHKATWINC1500U

14 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

0.4 Configuration

0.4.1 General

This page documents the general configuration.

0.4.1.1 Configuration file fields

This section is autogenerated from the Rule Schema.

Device general.device

Meta data general.device.meta

Optional meta data string. Displayed in device file and log file headers. Example: Site1; Truck4; Confi-
gRev12

Type Min length Max length
string 0 30

Security general.security

Server public key general.security.kpub

Server / user ECC public key in base64 format. Shall match the encryption used for all protected fields.

Type Min length Max length
string 0 100

Debug general.debug

Debug functionality for use during installation and troubleshooting.

System log general.debug.syslog

System events logged to the SD-card. The log levels are listed in order of increasing amount of information
logged. Should only be enabled if needed during installation or troubleshooting.

Type Default Options
integer 0 Disable (0): 0 Error (1): 1 Warning (2): 2 Info (3): 3

0.4.1.2 Configuration explained

This section contains additional information and examples.

Device meta data

The device meta data is an optional string copied to the device.json file and log file headers.

0.4. Configuration 15

CANedge2 GNSS Docs, Release FW 01.07.05

Security

Some configuration field values can be encrypted to hide sensitive data stored in the Configuration File
(passwords etc.). In this section, we provide a technical summary and provide resource suggestions for
implementing the encryption.

The field encryption feature uses a key agreement scheme based on Elliptic Curve Cryptography (ECC)
(similar to the one used in a TLS handshake). The scheme allows the device and user to compute
the same shared secret, without exposing any secrets. The shared secret is in turn used to generate a
symmetric key, which is used to encrypt / decrypt protected field values.

The following sequence diagram illustrates the process of encrypting configuration fields:

16 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Device (device.json) Device (config.json) User

1. Load device public key (base64)

2. Decode (base64) device public key

3. Generate user ECC key pair

4. Calculate shared secret

5. Derive symmetric key from shared secret

6. Encode (base64) user public key

7. Set user public key in config

8a. Encrypt field value

8b. Concatenate iv and ct

8c. Encode (base64)

8d. Set value in config

loop [8. Set values]

Device (device.json) Device (config.json) User

Below we explain the sequence:

1. Load device public key field (kpub) from the device.json file

2. Decode the device public key (base64)

3. Generate random user key pair (public and private) using curve secp256r1

4. Calculate shared secret using device public key and user private key

5. Derive shared symmetric key using HMAC-SHA256 with “config” as data and shared secret as key.

0.4. Configuration 17

CANedge2 GNSS Docs, Release FW 01.07.05

Use the first 16 bytes of the output

6. Encode user public key (used by the device to calculate the same shared symmetric key for decryp-
tion)

7. Set the encoded user public key in the device configuration file

8. Use AES-128 CTR to encrypt protected fields using the symmetric key. The resulting initialization
vector (iv) and cipher text (ct) are concatenated (iv + ct), base64 encoded and stored in the
configuration file

Note: The symmetric key shall match the public key set by the user in the configuration and protected
fields shall be encrypted with this symmetric key

Note: By storing the symmetric key it is possible to change specific protected fields - without updating
the user public key (and in turn all other protected fields)

Encryption tools

Tools are provided with the CANedge which can be used to encrypt sensitive fields.

Example Python code

You can batch-encrypt passwords across multiple devices using e.g. Python. Below we provide a basic
code sample to illustrate how Python can be used to encrypt plain-text data. The example code is tested
with Python 3.7.2 and requires the pycryptodome crypto library:

Python example code

0.4.2 Logging

This page documents the logging configuration

0.4.2.1 Configuration file fields

This section is autogenerated from the Rule Schema file.

File log.file

File split size (1 to 512 MB) log.file.split_size

Log file split size in MB. When the file split size is reached a new file is created and the logging continues.
Closed log files can be pushed to a server if network is available. Small split sizes may reduce performance.

Type Default Minimum Maximum
integer 50 1 512

File split time period (0 to 86400 seconds, 0 = disable) log.file.split_time_period

Log file split time period in seconds relative to midnight (00:00:00). When a split time is reached a new
file is created and the logging continues. Closed log files can be pushed to a server if network is available.
Small split time periods may reduce performance.

Type Default Minimum Maximum Multiple of
integer 0 0 86400 10

18 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

File split time offset (0 to 86400 seconds) log.file.split_time_offset

Log file split time offset in seconds. This value offsets the split_time_period relative to midnight
(00:00:00). The set value shall be less than the split_time_period value.

Type Default Minimum Maximum Multiple of
integer 0 0 86400 10

Cyclic logging log.file.cyclic

With cycling logging mode enabled the oldest log file is deleted when the memory card becomes full,
allowing the logging to continue.

Type Default Options
integer 1 Disable: 0 Enable: 1

Compression log.compression

Level log.compression.level

Window size used during optional compression. Larger window sizes yield potentially better compres-
sion rates, but may reduce logging performance. Compressed log files need to be decompressed prior to
processing.

Type De-
fault

Options

inte-
ger

0 Disable: 0 256 bytes window: 256 512 bytes window: 512 1024 bytes window:
1024

Encryption log.encryption

State log.encryption.state

Optional log file encryption. Encrypted log files need to be decrypted prior to processing. Decryption
requires your encryption password in plain form - if this is lost, the encrypted data cannot be recovered.

Type Default Options
integer 0 Disable: 0 Enable: 1

Error Frames log.error_frames

State log.error_frames.state

Specify whether to record error frames. Enabling this can negatively impact performance, as a potentially
large number of additional frames may be recorded.

Type Default Options
integer 0 Disable: 0 Enable: 1

0.4. Configuration 19

CANedge2 GNSS Docs, Release FW 01.07.05

0.4.2.2 Configuration explained

This section contains additional information and examples.

File split

File splitting can be based on file size or file size and time:

• split_time_period = 0: Split based on size only

• split_time_period > 0: Split based on both size and time - whichever is reached first

Limits

The file system limits should be considered when configuring the split size and time:

• SD-card size

• Max 1024 sessions

• Max 256 splits (log files) in each session

Above limits result in a maximum of 1024*256=262144 log files if fully utilised.

If the session count limit is reached, the logger will either:

• Stop logging if cyclic logging is disabled1

• Delete the oldest session if cyclic logging is enabled

If SD-card becomes full (no more space), the logger will either:

• Stop logging if cyclic logging is disabledPage 20, 1

• Delete the oldest split file from the oldest session if cyclic logging is enabled

Compression

Log files can be compressed on the device during logging using a variant of the LZSS algorithm based on
heatshrink. Compressed files will have *.MFC as file extension. A high window size improves compression
rates, but may cause message loss on very busy networks.

The table below lists results for J1939 and OBD data with different window size configurations3:

Window size (bytes) J1939 % (range) OBD % (range)
256 49.7 (47.1-51.4) 32.0 (30.3-32.8)
512 49.5 (46.3-51.6) 30.2 (29.6-31.1)
1024 41.4 (38.9-45.5) 30.0 (29.6-30.8)

Decompression can be done using an implementation of LZSS or using the tools provided with the
CANedge.

Note: The split size set in split_size considers the size of the compressed data. I.e. if the split size
is 10 MB, the resulting file sizes become 10 MB regardless if compression is used or not.

1 Logging resumes if files are offloaded via a network connection
3 Compressed size in percentage of original. Lower is better.

20 CONTENTS

https://github.com/atomicobject/heatshrink

CANedge2 GNSS Docs, Release FW 01.07.05

Encryption

Log files can stored as encrypted (AES-GCM) *.MFE files.

Note: It is recommended to use a 40+ character password for proper encryption

Decryption can be done using an implementation of the PBKDF2 algorithm or using the tools provided
with the CANedge.

Error Frames

Enabling error frames will log errors across all interfaces, both CAN and LIN. Note that this can decrease
the performance of the device due to the added logging load.

For more information on logging of CAN-bus errors, see configuration/can/error:CAN errors.

0.4.3 Real-Time-Clock

This page documents the real-time-clock configuration

Warning: An accurate time is required when communicating with a S3 server

0.4.3.1 Configuration file fields

This section is autogenerated from the Rule Schema file.

Real-Time Clock (RTC) rtc

Time synchronization method rtc.sync

Internal real-time-clock synchronization method. The real-time-clock is maintained when the device is
off.

Type Default Options
integer 2 Retain current time: 0 Manual update: 1 CAN-bus: 3 Network: 2

Time zone (UTC-12 to UTC+14) rtc.timezone

Adjustment in full hours to the UTC time. Includes daylight savings time if applicable.

Type Default Minimum Maximum
integer 0 -12 14

Adjustment (-129600 to 129600 seconds) rtc.adjustment

Adjustment in seconds to the UTC time. Can be used for fine tuning the internal time.

Type Default Minimum Maximum
integer 0 -129600 129600

0.4. Configuration 21

CANedge2 GNSS Docs, Release FW 01.07.05

0.4.3.2 Configuration explained

This section contains additional information and examples.

The CANedge uses a real-time clock (RTC) with battery backup, which allows it to retain the absolute
date & time when the device is not powered. The RTC enables the CANedge to add absolute timestamps
to recorded messages.

Time-zone changes and minor adjustments can be done via the timezone and adjustment fields.

Synchronization methods (sync)

The RTC time can either be retained, manually set, synchronized via CAN-bus or synchronized via
network.

Note: When using an external synchronization source, the TimeExternal signals can be used to confirm
that the device correctly receives and understands the time synchronization information.

Manual update

Manually changing the RTC is only needed if the RTC time has been completely reset (e.g. after a
battery replacement). The following sequence explains how the RTC can be manually set:

1. Select the manual sync method and set the current UTC time

2. Power on the device and wait a few seconds to allow the device to read the manually set time

3. Power off the device

4. Change the sync method to retain the current time

5. Power on the device again

6. Verify that the new absolute time is now correctly retained across power cycles

7. Set timezone (timezone) and do minor adjustments (adjustment) if needed

Note: The internally stored session counter is lost when the battery is removed. See Setting session
counter for information on how to set the session counter.

CAN-bus

The RTC can be synchronized based on a CAN-bus message. The interpretation of message data signals
is configurable.

Time information can be provided via either physical CAN-bus channel or using the internal GnssTime
signals.

The synchronization method depends on the time difference between the RTC time and the external
time provided via CAN-bus:

• Time difference exceeds tolerance: The RTC time is directly set to the external time (discrete
jump in time)

• Time difference within tolerance: The RTC time slowly tracks the external time (continuous
time)1

1 Continues tracking requires that an updated external time is available at least once each hour

22 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

The synchronization message data is assumed to include the external time and optionally a valid flag
indicating if the external time should be applied or not:

• Valid signal (optional): 1: Time signal is valid, else: Time signal is invalid

• Time signal (mandatory): The current UTC time as Epoch (floating-point number of seconds since
01/01/1970 00:00:00 UTC)

Warning: Avoid using a high-frequency CAN-bus message for time synchronization. If the frequency
of the time message is high, consider using pre-scalers to reduce the period to e.g. 1 minute.

The configuration of the signals uses a concept similar to that used by .DBC files. In case a .DBC file
is available (describing the interpretation of the synchronization message), the information from the file
can be used directly for configuration. For more information see Section configuration/signal:Signal.

Example 1: Using both the valid signal and time signal (time message generated by a CANmod.GPS
device).

• The valid signal is 1 bit starting at index 0. The factor and offset are chosen such that the decoded
signal becomes 1 when the time signal is valid.

• The time signal is 40 bit starting at index 8. After applying factor and offset the result becomes
Epoch in seconds.

Signal Type Byteorder Bitpos Length Factor Offset
Valid Unsigned Intel 0 1 1 0
Time Unsigned Intel 8 40 0.001 1577840400

Example 2: Same as Example 1 but without using the valid signal.

• The valid signal length is set to 0. With a factor of 0 and offset of 1, the result always becomes 1
(valid)

Signal Type Byteorder Bitpos Length Factor Offset
Valid Unsigned Intel 0 0 0 1
Time Unsigned Intel 8 40 0.001 1577840400

Note: If a valid signal is not included in the data, a constant valid signal can be enforced by setting
the factor to 0 and offset to 1.

Network

The RTC can be synchronized using the WiFi connection and an external time (NTP) server. When
enabled, the device periodically polls an updated time.

Warning: Make sure firewalls etc. allow NTP (port 123) traffic.

The difference between the RTC time and the network time is compared to the configured tolerance.
For more information on the tolerance see the synchronization via CAN-bus section.

0.4. Configuration 23

CANedge2 GNSS Docs, Release FW 01.07.05

0.4.4 Secondary port

This page documents the secondary port configuration

0.4.4.1 Configuration file fields

This section is autogenerated from the Rule Schema file.

Power schedule secondaryport.power_schedule

The daily power schedule is defined by a number of power-on from/to intervals. Define no power-on
intervals to keep always off. Define one interval with from/to both set to 00:00 to keep always on. Time
format is HH:MM (1 minute resolution)

Type Default Max items
array [] 5

Item secondaryport.power_schedule.item

From secondaryport.power_schedule.item.from

Power-on FROM time in format HH:MM. Shall be before power-on TO time. E.g. at midnight 00:00

Type Default
string 00:00

To secondaryport.power_schedule.item.to

Power-on TO time in format HH:MM. Shall be after power-on FROM time. E.g. at midday 12:00.

Type Default
string 00:00

0.4.4.2 Configuration explained

This section contains additional information and examples.

Note: Power out scheduling has resolution of 1 min and 1 min tolerance

Note: Power scheduling uses adjusted local time (as set in the configuration)

Example: Secondary port power is scheduled to be on daily in the interval 00:00-04:00 and
12:00-16:00. Secodary port configuration:

"secondaryport": {
"power_schedule": [
{
"from": "00:00",
"to": "04:00"

},
{
"from": "12:00",
"to": "16:00"

}
(continues on next page)

24 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

(continued from previous page)

]
}

The power is turned off when the time changes from 03:59 to 04:00 and 15:59 to 16:00.

0.4.5 CAN

This page documents the CAN configuration.

The CANedge supports two physical CAN-bus channels and one internal virtual channel. The internal
channel is used for internally generated signals.

The configuration options of CAN Channel 1 and CAN Channel 2 are identical1. The internal channel
supports a limited set of configuration options.

The CANedge can detect and log CAN-bus errors if enabled in Logging. For more information, see
configuration/can/error:CAN errors.

The CAN configuration is split into the following sections:

0.4.5.1 General

This page documents the general configuration

Configuration file fields

This section is autogenerated from the Rule Schema file.

Can.general can.general

Reception (rx) initial state can.general.rx_state

The initial state of CAN-bus reception. Can be changed using the control signal.

Type Default Options
integer 1 Disable: 0 Enable: 1

Transmission (tx) initial state can.general.tx_state

The initial state of CAN-bus transmissions. Can be changed using the control signal.

Type Default Options
integer 1 Disable: 0 Enable: 1

Configuration explained

This section contains additional information and examples.

The rx_state / tx_state initial states are primarily used in conjunction with the Control Signal. E.g.
transmission of messages from the CANedge can be initialized as disabled using tx_state and later
changed to enabled by a defined Control Signal.

1 All channels can be configured individually.

0.4. Configuration 25

CANedge2 GNSS Docs, Release FW 01.07.05

0.4.5.2 Physical

This page documents the physical configuration

Configuration file fields

This section is autogenerated from the Rule Schema file.

Mode can.phy.mode

Device CAN bus mode. Configures how the device interacts with the bus. In Normal mode, the device can
receive, acknowledge and transmit frames. In Restricted mode, the device can receive and acknowledge,
but not transmit frames. In Bus Monitoring mode, the device can receive, but not acknowledge or transmit
frames. It is recommended to always use the most restrictive mode possible.

Type De-
fault

Options

inte-
ger

1 Normal (receive, acknowledge and transmit): 0 Restricted (receive and acknowledge):
1 Monitoring (receive only): 2

Automatic retransmission can.phy.retransmission

Retransmission of frames that have lost arbitration or that have been disturbed by errors during trans-
mission.

Type Default Options
integer 1 Disable: 0 Enable: 1

CAN FD specification can.phy.fd_spec

Configures the CAN FD specification used by the device. Shall match the specification used by the CAN
bus network.

Type Default Options
integer 0 ISO CAN FD (11898-1): 0 non-ISO CAN FD (Bosch V1.0.): 1

Bit-rate configuration mode can.phy.bit_rate_cfg_mode

Configures how the CAN bus bit-rate is set. Modes Auto-detect and Bit-rate support all standard bit-rates.
Non-standard bit-rate configuration can be set using Bit-timing. It is recommended to set the bit-rate
manually if it is known.

Type Default Options
integer 0 Auto-detect: 0 Bit-rate (simple): 1 Bit-timing (advanced): 2

Configuration explained

This section contains additional information and examples.

26 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Bit-rate configuration

The input clock to the CAN-bus controllers is set to 40MHz (480MHz prescaled by 12).

Bit-rate modes Auto-detect and Bit-rate (simple) support the following list of bit-rates1:

Bitrate BRP Quanta Seg1 Seg2 SJW
5k 100 80 63 16 4
10k 50 80 63 16 4
20k 25 80 63 16 4
33.333k 10 120 95 24 4
47.619k 8 105 83 21 4
50k 10 80 63 16 4
83.333k 4 120 95 24 4
95.238k 4 105 83 21 4
100k 5 80 63 16 4
125k 4 80 63 16 4
250k 2 80 63 16 4
500k 1 80 63 16 4
800k 1 50 39 10 4
1M 1 40 31 8 4
2M 1 20 15 4 4
4M 1 10 7 2 2

In Auto-detect mode, the device attempts to determine the bit-rate from the list of detectable bit-rates.
Depending on factors such as data patterns, bit-rate deviation etc. it may not always be possible to
detect the bit-rate automatically.

Warning: It is recommended to set the bit-rate manually when possible

Warning: Bit-rate auto-detect cannot be used to detect a CAN FD switched bit-rate

In mode Bit-timing (advanced), the bit-rate timing can be set directly. The following equations can
be used to calculate the bit-timing fields:

• Input clock: 𝐶𝐿𝐾 = 480000000
12 = 40000000 = 40MHz

• Quanta: 𝑄 = 1 + 𝑆𝐸𝐺1 + 𝑆𝐸𝐺2

• Bit-rate: 𝐵𝑅 = 𝐶𝐿𝐾/𝐵𝑅𝑃
𝑄

• Sample point: 𝑆𝑃 = 100 · 1+𝑆𝐸𝐺1
𝑄

Example: Matching bit-timing settings based on different input clock frequency (CLK).

Settings to match (based on a 80MHz input clock):

• Bit-rate: 2M

• Quanta: 40

• SEG1: 29

• SEG2: 10

• Sample point: 75%
1 All bit-rate configurations use a sample point (SP) of 80%

0.4. Configuration 27

CANedge2 GNSS Docs, Release FW 01.07.05

Above settings are based on an input clock with frequency:

𝐶𝐿𝐾 = 𝐵𝑅 · 𝑄 = 2000000 · 40 = 80MHz

The CANedge uses a 40MHz input clock. To obtain a bit-rate of 2M with a 40MHz input clock, the
number of quanta is calculated as:

𝑄 = 𝐶𝐿𝐾/𝐵𝑅𝑃

𝐵𝑅
= 40000000/1

2000000 = 20

To obtain a sampling point of 75%, SEG1 is calcualted as:

𝑆𝐸𝐺1 = 𝑆𝑃 · 𝑄

100 − 1 = 75 · 20
100 = 14

Now, SEG2 is calculated as:

𝑆𝐸𝐺2 = 𝑄 − 𝑆𝐸𝐺1 − 1 = 20 − 14 − 1 = 5

The equivalent bit-timing settings using the 40 MHz input clock of the CANedge becomes:

• BRP: 1

• SEG1: 14

• SEG2: 5

0.4.5.3 Filter

This page documents the filter configuration

Configuration file fields

This section is autogenerated from the Rule Schema file.

Receive filters can.filter

Filter remote request frames can.filter.remote_frames

Controls if remote request frames are forwarded to the message filters. If `Reject` is selected, remote
request frames are discarded before they reach the message filters.

Type Default Options
integer 0 Reject: 0 Accept: 1

Id can.filter.id

Filters are checked sequentially, execution stops with the first matching filter element. Max 128 11-bit
filters and 64 29-bit filters.

Max items
192

Name can.filter.id.name

Optional filter name.

Type Max length
string 16

State can.filter.id.state

28 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Disabled filters are ignored.

Type Default Options
integer 1 Disable: 0 Enable: 1

Type can.filter.id.type

Action on match, accept or reject message.

Type Default Options
integer 0 Acceptance: 0 Rejection: 1

ID format can.filter.id.id_format

Filter ID format. Filters apply to messages with matching ID format.

Type Default Options
integer 0 Standard (11-bit): 0 Extended (29-bit): 1

Filter method can.filter.id.method

The filter ID matching mechanism.

Type Default Options
integer 0 Range: 0 Mask: 1

From (range) / ID (mask) (HEX) can.filter.id.f1

If filter method is Range, this field defines the start of range. If filter method is Mask, this field defines
the filter ID.

Type Default Max length
string 0 8

To (range) / mask (mask) (HEX) can.filter.id.f2

If filter method is Range, this field defines the end of range. If filter method is Mask, this field defines
the filter mask.

Type Default Max length
string 7FF 8

Configuration explained

This section contains additional information and examples.

The following uses a mix of binary, decimal and hexadecimal number bases. For more information on
the notation used, see to Number bases.

Note: In the following, it is convenient to do some calculations using binary numbers (base 2). However,
the configuration file generally accepts either decimal or hexadecimal numbers.

0.4. Configuration 29

CANedge2 GNSS Docs, Release FW 01.07.05

Filter processing

The filter elements in the list of filters are processed sequentially starting from the first element. Pro-
cessing stops on the first filter match.

Example: A message matches filter element 3. Filter element 4 is not evaluated.

Filter element 1 Filter element 2 Filter element 3 Filter element 4

Messages matching no filters are rejected as default.

30 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Note: The default Configuration File contains filters accepting all incoming CAN messages

Filter state

The state of filter elements can be Enable or Disable. Disabled filter elements are ignored, as if they are
not in the list of filters. If there are no enabled filters in the list then all messages are rejected.

By disabling a filter element (instead of deleting the element) it can be easily enabled at a later time.

Filter types

Filter elements can be either Acceptance or Rejection:

• If a message matches an Acceptance filter it is accepted

• If a message matches a Rejection filter it is discarded

• If a message does not match a filter, the next filter in the list is processed

The filter list can hold a combination of Acceptance and Rejection filter elements. The first matching
filter element determines if a message is accepted or rejected. Acceptance and Rejection filters can be
combined to generate a complex message filtering mechanism.

Example: A message matches acceptance filter 3. Rejection filter 4 is not evaluated. The message is
accepted.

0.4. Configuration 31

CANedge2 GNSS Docs, Release FW 01.07.05

Acceptance 1 Rejection 2 Acceptance 3 Rejection 4

Example: A message matches rejection filter 2. The following filters are not evaluated. The message is
rejected.

32 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Acceptance 1 Rejection 2 Acceptance 3 Rejection 4

Example: A message does not match any filters. The message is rejected.

0.4. Configuration 33

CANedge2 GNSS Docs, Release FW 01.07.05

Acceptance 1 Rejection 2 Acceptance 3 Rejection 4

34 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Filter method

Acceptance and Rejection filters can be defined by range or mask. In either case, both the message type
(standard / extended) and ID are compared to the filter.

Filter range method

With the Range method, the filter defines a range of IDs which are compared to the message ID. Message
IDs within the range (both start and end included) match the filter.

Example: Standard ID filter with range from = 1, to = 10:

ID format ID (DEC) Match
Standard 0 No
Standard 1 Yes
Standard 10 Yes
Standard 11 No
Extended 1 No

Filter mask method

With the Mask method, the filter defines an ID and Mask which are compared to the message ID.

A message matches a mask filter if the following condition is true1:

filter_id & filter_mask == message_id & filter_mask

The below examples demonstrate the use of filters using the Mask method.

Example: Filter configuration which accepts one specific message ID: 200010 = 111110100002. The filter
ID is set to the value of the message ID to accept. The filter mask is set to all ones, such that all bits of
the filter are considered, as given in (1).

Filter ID
Filter mask
Masked filter

111110100002
&111111111112

111110100002

(1)
Message ID
Filter mask
Masked ID

111110100002
&111111111112

111110100002

(2)

To test if the message passes the filter, we apply the filter mask to the message ID as given in (2). The
masked filter and the masked ID are equal - the message matches the filter.

Example: Filter configuration which accepts two message IDs:

• 200010 = 111110100002

• 200110 = 111110100012

Note that the two binary numbers are identical except for the rightmost bit. To design a filter which
accepts both IDs, we can use the mask field to mask out the rightmost bit - such that it is not considered
when the filter is applied. In (1) the mask is set such that the rightmost bit is not considered (indicated
by red color).

Filter ID
Filter mask
Masked filter

111110100002
&111111111102

111110100002

(1)
Message ID
Filter mask
Masked ID

111110100012
&111111111102

111110100002

(2)

To test if the messages pass the filter, we apply the mask to the message ID 111110100012 as given in
(2). The masked filter and the masked ID are equal - the message matches the filter. Note that both

1 & is used as the bitwise AND operation

0.4. Configuration 35

CANedge2 GNSS Docs, Release FW 01.07.05

111110100002 and 111110100012 match the filter, as the rightmost bit is not considered by the filter (the
rightmost bit is masked out).

Example: J1939 - filter configuration which accepts PGN 61444 (EEC1) messages.

J1939 message frames use 29-bit CAN-IDs. The Parameter Group Number (PGN) is defined by 18 of
the 29 bits. The remaining 11 bits define the priority and source address of the message. It is often
useful to configure a filter to accept a specific PGN regardless of the source address and the priority -
this can be done using the filter mask (to ignore the source and priority).

Below, the left red bits represent the 3-bit priority, the green bits the 18-bit PGN and the right red bits
the 8-bit source address of the 29-bit CAN-ID.

000111111111111111111000000002 = 3FFFF0016

Message ID bits in positions with zero bits in the filter mask are ignored. By using 3FFFF0016 as filter
mask, the source and priority are ignored.

To specifically accept PGN 61444 (F00416) messages, the message ID is set to F0040016 - note the the
final 8-bit 0016 represents the source address which is ignored by the filter mask (these bits can be any
value).

Filter mask 3FFFF0016 can be used for all J1939 PGN messages. To accept specific PGNs, the message
ID is adjusted. To accept one specific PGN (as in the example above), the message ID is set to the
specific PGN with 0016 appended to represent the ignored source address field.

Filter list examples

Below examples demonstrate how filters can be combined into a list of filters.

Example: The filter list is set up to accept standard messages with even IDs in range 50010 − 100010
(500, 502, . . . 998, 1000):

The following two filters are used to construct the wanted filter mechanism:

• Rejection filter which rejects all odd message IDs

• Acceptance filter which accepts all message IDs in range 50010 − 100010

The rejection filter is setup to reject all odd messages by using Mask filtering. The filter is
set up with:

• Filter ID: 110 = 000000000012

• Filter Mask: 110 = 000000000012

Above rejection filter rejects all messages with the rightmost bit set (all odd IDs).

The acceptance filter is set up to accept all messages in range 50010 − 100010 by using Range
filtering. The filter is set up with:

• Filter from: 50010

• Filter to: 100010

The filter list is constructed with the rejection filter first, followed by the acceptance filter.

Note that messages are first processed by the rejection filter (rejects all odd messages), then
proccessed by the acceptance filter (accepts all message in range). If none of the filters match,
the default behavior is to reject the message. It is in this case important that the rejection
filter is placed before the acceptance filter in the list (processing stops on first match).

Filter list test table:

36 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Message ID Filter elm 1 Filter elm 2 Result
49810 Ignore Ignore Reject
49910 Reject Reject
50010 Ignore Accept Accept
50110 Reject Reject
99910 Reject Reject
100010 Ignore Accept Accept
100110 Reject Reject
100210 Ignore Ignore Reject

Message Prescaling

Message prescaling can be used to decrease the number of logged messages for a given message ID.
Prescaling is applied to the messages accepted by the associated filter. The list of filters can be assigned
a mixture of prescaler types.

Applying filters can dramatically reduce log file size, resulting in prolonged offline logging and reduced
data transfer time and size.

The prescaling type can be set to:

• None: Disables prescaling

• Count: Prescales based on message occurrences

• Time: Prescales based on message period time

• Data: Prescales based on changes in the message data payload

The first message with a given ID is always accepted regardless of prescaling type.

Note: A maximum of 100 unique message IDs can be prescaled for each CAN-bus channel (the first
100 IDs received by the device). Additional unique IDs are not prescaled

Count

Count prescaling reduces the number of messages with a specific ID by a constant factor (prescaling
value). A prescaling value of 2 accepts every 2nd message (with a specific ID), a value of 3 every 3rd
and so on up to 2562.

Count prescaling applied to ID 60010 with a scaling value of 3

ID (DEC) ID occurrences Result
60010 1 Accept
60010 2 Reject
60010 3 Reject
60010 4 Accept
60010 5 Reject

2 A scaling factor of 1 effectively disables prescaling

0.4. Configuration 37

CANedge2 GNSS Docs, Release FW 01.07.05

Time

Time prescaling sets a lower limit on time interval (period time) of a specific message ID. This is done
by rejecting messages until at least the prescaler time has elapsed3. The prescaler timer is reset each
time a message is accepted. The prescaling value is set in milliseconds4 with a valid range 1-4194304
(0x400000).

This prescaler type is e.g. useful if a slowly changing signal (low frequency signal content) is broadcasted
on the CAN-bus at a high frequency5.

Example: A slowly changing temperature measurement broadcasted every 10 ms (100Hz). Prescaled to
a minimum time interval of 100ms (prescaler value set to 100).

Example: Time prescaling applied to ID 70010 with a time interval of 1000ms selected.

ID (DEC) Message timestamp
[ms]

Prescaler timer [ms] Result

70010 200 0 Accept
70010 700 500 Reject
70010 1000 800 Reject
70010 1200 1000 -> 0 (reset) Accept
70010 1300 100 Reject
70010 3200 2000 -> 0 (reset) Accept
70010 4200 1000 -> 0 (reset) Accept
70010 5200 1000 -> 0 (reset) Accept

3 Note that messages are not resampled to a specific fixed period time
4 It is not possible to do sub-millisecond time prescaling
5 Higher frequency than needed to get a good representation of the signal content

38 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Data

Data prescaling can be used to only accept messages when the data payload changes. A mask can be
set to only consider changes in one or more specific data bytes. The mask works on a byte level. The
mask is entered in hex up to 8 bytes long (16 hex characters). Each byte contains 8 bits, allowing for
the mask to be applied to any of the maximum 64 data bytes (CAN FD).

This prescaler type is useful if only changes in data or parts of the data are to be logged.

Examples of data masks:

• "": A empty mask triggers on any data change (equivalent to mask value FFFFFFFFFFFFFFFF)

• 1: Triggers on changes to the first data byte (binary 1)

• 2: Triggers on changes to the second data byte (binary 10)

• 3: Triggers on changes to the first or second data byte (binary 11)

• 9: Triggers on changes to the first or fourth data byte (binary 1001)

• FF: Triggers on changes to any of the first 8 data bytes (binary 11111111)

• 100: Triggers on changes to the 9th data byte (binary 100000000)

If the data payload contains more data bytes than entered in the mask, then changes to the additional
bytes are ignored by the prescaler.

Warning: Data prescaling assumes that a message with a specific ID always carries the same number
of data bytes

Example: A discretely changing signal is broadcasted every 100 ms (10Hz). A data prescaler is used
such that only changes in the signal are logged.

Example: Data prescaling applied to ID 80010 with empty mask (all changes considered). D0-D3 is a
4-byte payload (with D0 the first data byte).

ID (DEC) D0 D1 D2 D3 Result
80010 00 11 22 33 Accept
80010 00 11 22 33 Reject
80010 00 BB 22 33 Accept
80010 AA BB 22 33 Accept
80010 AA BB 22 DD Accept
80010 AA BB 22 DD Reject

0.4. Configuration 39

CANedge2 GNSS Docs, Release FW 01.07.05

Example: Data prescaling applied to ID 80010 with mask 1 (considering only changes to the 1st data
byte). D0-D3 is a 4-byte payload (with D0 the first data byte).

ID (DEC) D0 D1 D2 D3 Result
80010 00 11 22 33 Accept
80010 00 11 22 33 Reject
80010 00 BB 22 33 Reject
80010 AA BB 22 33 Accept
80010 AA BB 22 DD Reject
80010 AA BB 22 DD Reject

Example: Data prescaling applied to ID 80010 with mask 8 (considering only changes to the 4th data
byte). D0-D3 is a 4-byte payload (with D0 the first data byte).

ID (DEC) D0 D1 D2 D3 Result
80010 00 11 22 33 Accept
80010 00 11 22 33 Reject
80010 00 BB 22 33 Reject
80010 AA BB 22 33 Reject
80010 AA BB 22 DD Accept
80010 AA BB 22 DD Reject

Example: Data prescaling applied to ID 80010 with mask 9 (considering only changes to the 1st or 4th
data byte). D0-D3 is a 4-byte payload (with D0 the first data byte).

ID (DEC) D0 D1 D2 D3 Result
80010 00 11 22 33 Accept
80010 00 11 22 33 Reject
80010 00 BB 22 33 Reject
80010 AA BB 22 33 Accept
80010 AA BB 22 DD Accept
80010 AA BB 22 DD Reject

0.4.5.4 Transmit

This page documents the transmit configuration.

Configuration file fields

This section is autogenerated from the Rule Schema file.

Transmit messages can.transmit

List of CAN bus messages transmitted by the device. Requires a CAN-bus physical mode supporting
transmissions.

Type Max items
array 64

Item can.transmit.item

Name can.transmit.item.name

Optional transmit message name.

40 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Type Max length
string 16

State can.transmit.item.state

Disabled transmit messages are ignored.

Type Default Options
integer 1 Disable: 0 Enable: 1

ID Format can.transmit.item.id_format

ID format of the transmit message.

Type Default Options
integer 0 Standard (11-bit): 0 Extended (29-bit): 1

Frame format can.transmit.item.frame_format

Frame format of the transmit message.

Type Default Options
integer 0 Standard: 0 Standard RTR: 2 FD: 1

Bit-Rate Switch can.transmit.item.brs

Determines if an FD message is transmitted using a switched bit-rate.

Type Default
integer 0

Include in log can.transmit.item.log

Determines if the transmitted message is included in the log file.

Type Default Options
integer 0 Disable: 0 Enable: 1

Period (10 ms steps) can.transmit.item.period

Time period of the message transmission. 0: single shot, >0: periodic. Unit is ms.

Type Minimum Maximum Multiple of
integer 0 4294967290 10

Delay (10 ms steps) can.transmit.item.delay

Offset message within the period or delay a single shot message. If multiple messages are transmitted by
the device, it is recommended to offset each separately to reduce peak load on bus. If period > 0, delay <
period. If single-shot, delay can be up to max value. Unit is ms.

Type Minimum Maximum Multiple of
integer 0 4294967290 10

Message ID (hex) can.transmit.item.id

ID of message to transmit in hex. Example: 1FF.

0.4. Configuration 41

CANedge2 GNSS Docs, Release FW 01.07.05

Type
string

Messages Data (hex) can.transmit.item.data

Data bytes of message to transmit. RTR frames only use the number of bytes do determine the DLC.
Example: 01020304 or 0102030405060708.

Type Max length
string 128

Configuration explained

This section contains additional information and examples.

Period and delay

If multiple transmit messages are defined, it is recommended to spread them in time by using delay. It
may not be possible to transmit all messages if they are to be transmitted simultaneously.

0.4.5.5 Heartbeat

This page documents the heartbeat configuration

Configuration file fields

This section is autogenerated from the Rule Schema file.

State can.heartbeat.state

Enable to periodically transmit heartbeat signal.

Type Default Options
integer 0 Disable: 0 Enable: 1

ID Format can.heartbeat.id_format

ID format of heartbeat message.

Type Default Options
integer 1 Standard (11-bit): 0 Extended (29-bit): 1

ID (hex) can.heartbeat.id

ID of heartbeat message in hex. Example: 1FF.

Type Default
string 00435353

42 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Configuration explained

This section contains additional information and examples.

Note: The heartbeat cannot be disabled using the control signal

Note: The heartbeat feature requires a CAN-bus physical mode supporting transmissions

Payload format

The device can transmit a 1 Hz periodic heartbeat signal. The signal payload contains logging state
(enabled/disabled), the device time and space left on the SD-card in MB.

The interpretation of the 8-byte data payload of the heartbeat signal is given below:

Byte No. 0 1 2-5 6-7
Interpretation Fixed 0xAA State Epoch time Space left

• Byte 0 has the reserved value 0xAA

• The Epoch time is time-zone and offset adjusted

• Multi-byte fields should be interpreted MSB (Most-SignificantByte) first

• The State holds information on the current rx_state / tx_state:

– 0: RX disabled, TX disabled

– 1: RX enabled, TX disabled

– 2: RX disabled, TX enabled

– 3: RX enabled, TX enabled

Heartbeat with payload: AA 03 5D 78 FB 8B 1D 93

Byte No. 0 1 2-5 6-7
Interpretation Fixed State Epoch time Space left
Payload 0xAA 0x03 0x5D78FB8B 0x1D93

• Fixed: 0xAA

• State: RX and TX enabled

• Epoch time: 5D78FB8B16 = 156820980310 -> 11/09/2019 13:50:03

• Space left: 1D9316 = 757110 MB

Heartbeat with payload: AA 00 5D 78 FB 8B 00 00

Byte No. 0 1 2-5 6-7
Interpretation Fixed State Epoch time Space left
Payload 0xAA 0x00 0x5D78FB8B 0x0000

• Fixed: 0xAA

• State: RX and TX disabled

• Epoch time: 5D78FB8B16 = 156820980310 -> 11/09/2019 13:50:03

• Space left: 000016 = 010 MB

0.4. Configuration 43

CANedge2 GNSS Docs, Release FW 01.07.05

0.4.5.6 Control

This page documents the control configuration

Configuration file fields

This section is autogenerated from the Rule Schema file.

Can.control can.control

Control reception (rx) state can.control.control_rx_state

Control CAN-bus reception state (including logging)

Type Default Options
integer 0 Disable: 0 Enable: 1

Control transmission (tx) state can.control.control_tx_state

Control CAN-bus transmission state (including logging)

Type Default Options
integer 0 Disable: 0 Enable: 1

Start can.control.start

Message can.control.start.message

Channel can.control.start.message.chn

CAN-bus channel

Type Default Options
integer 0 CAN internal: 0 CAN 1: 1 CAN 2: 2

ID format can.control.start.message.id_format

ID format of message.

Type Default Options
integer 0 Standard (11-bit): 0 Extended (29-bit): 1

ID (hex) can.control.start.message.id

ID of message in hex. Example: 1FF.

Type Default
string 0

ID mask (hex) can.control.start.message.id_mask

ID mask in hex. Example: 7FF.

Type Default
string 7FF

Signal can.control.start.signal

Signal type can.control.start.signal.type

44 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Type Default Options
integer 0 Unsigned: 0

Signal byteorder can.control.start.signal.byteorder

Can be Motorola (big endian) or Intel (little endian)

Type Default Options
integer 1 Motorola: 0 Intel: 1

Signal bit position can.control.start.signal.bitpos

Type Default Minimum Maximum
integer 0 0 512

Signal bit length can.control.start.signal.length

Type Default Minimum Maximum
integer 0 0 64

Signal scaling can.control.start.signal.factor

Type Default
number 0

Signal offset can.control.start.signal.offset

Type Default
number 0

Trigger high (dec) can.control.start.trigger_high

Type Default
number 0

Trigger low (dec) can.control.start.trigger_low

Type Default
number 0

Stop can.control.stop

Message can.control.stop.message

Channel can.control.stop.message.chn

CAN-bus channel

Type Default Options
integer 0 CAN internal: 0 CAN 1: 1 CAN 2: 2

ID format can.control.stop.message.id_format

ID format of message.

0.4. Configuration 45

CANedge2 GNSS Docs, Release FW 01.07.05

Type Default Options
integer 0 Standard (11-bit): 0 Extended (29-bit): 1

ID (hex) can.control.stop.message.id

ID of message in hex. Example: 1FF.

Type Default
string 0

ID mask (hex) can.control.stop.message.id_mask

ID mask in hex. Example: 7FF.

Type Default
string 7FF

Signal can.control.stop.signal

Signal type can.control.stop.signal.type

Type Default Options
integer 0 Unsigned: 0

Signal byteorder can.control.stop.signal.byteorder

Can be Motorola (big endian) or Intel (little endian)

Type Default Options
integer 1 Motorola: 0 Intel: 1

Signal bit position can.control.stop.signal.bitpos

Type Default Minimum Maximum
integer 0 0 512

Signal bit length can.control.stop.signal.length

Type Default Minimum Maximum
integer 0 0 64

Signal scaling can.control.stop.signal.factor

Type Default
number 0

Signal offset can.control.stop.signal.offset

Type Default
number 0

Trigger high (dec) can.control.stop.trigger_high

Type Default
number 0

46 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Trigger low (dec) can.control.stop.trigger_low

Type Default
number 0

Configuration explained

This section contains additional information and examples.

The control signal can used to control the device message reception (effectively the logging) and / or
the transmission (effectively the processing of the transmit list) for each CAN-bus channel. The control
signal has a flexible configuration allowing for integration with many protocols. The control signal can
e.g. be used to start / stop logging based on some application parameters, such as speed, RPM, geofence,
time-of-day or discrete events.

Note: The two physical channels can be set up to be controlled based on Internal signals

The configuration of the signals uses a concept similar to that used by .DBC files. In case a .DBC file
is available (describing the interpretation of the control message signals), the information from the file
can be used directly for configuration. For more information see Section configuration/signal:Signal.

Control signal overview:

• A control signal can be configured for each CAN-bus channel

• A control signal can be based on messages from any channel

• One message ID is used for start and one for stop. These can be different or the same

• The message payload is decoded on the device, making it easy to set start / stop ranges

The start / stop ranges follow the following logic:

• If the start / stop ranges do not overlap, they are evaluated individually

• If the start range lies within the stop range, then start takes precedence (see examples below)

• If the stop range lies within the start range, then stop takes precedence (see examples below)

Note: File splitting is not affected by the control signal (i.e. the control signal does not force additional
log file splits)

Note: The control signal can only be used if accepted by the CAN-bus filter

Note: The initial states of message reception and transmission are set in configuration section General.

0.4. Configuration 47

CANedge2 GNSS Docs, Release FW 01.07.05

Examples

Example: Start / stop ranges not overlapping.

Can e.g. be used to start logging when speed signal exceeds some value and stop when it drops below
some other value.

Start trigger:

• High: 10000

• Low: 7500

Stop trigger:

• High: 2500

• Low: 0

Example: Start / stop ranges not overlapping.

Can e.g. be used to start logging when pressure signal drops below some value and stop when it again
raises above some other value.

Start trigger:

• High: 2500

• Low: 0

Stop trigger:

• High: 10000

• Low: 7500

48 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Example: Start range lies within stop range, start takes precedence.

Can e.g. be used to start logging when a temperature signal lies within some range and stop when
outside.

Start trigger:

• High: 7500

• Low: 2500

Stop trigger:

• High: 10000

• Low: 0

Example: Stop range lies within start range, stop takes precedence.

Can e.g. be used to start logging when the absolute value of an acceleration signal exceeds a certain
value.

Start trigger:

• High: 5000

0.4. Configuration 49

CANedge2 GNSS Docs, Release FW 01.07.05

• Low: -5000

Stop trigger:

• High: 2500

• Low: -2500

0.4.6 LIN

The configurations of LIN Channel 1 and LIN Channel 2 are identical.

The LIN configuration is split into the following sections:

0.4.6.1 Physical

This page documents the physical configuration

Configuration file fields

This section is autogenerated from the Rule Schema file.

Mode lin.phy.properties.mode

Device LIN bus mode.

Type Default Options
integer 0 Subscriber: 0 Publisher: 1

Bit-rate lin.phy.properties.bit_rate

Type Default Options
integer 19200 2400: 2400 9600: 9600 10400: 10400 19200: 19200

50 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Configuration explained

This section contains additional information and examples.

0.4.6.2 Frame Table

This page documents the frame table configuration

Configuration file fields

This section is autogenerated from the Rule Schema file.

Name lin.frames.items.name

Optional frame name.

Type Max length
string 16

Frame ID (hex) lin.frames.items.id

ID of frame in hex. Example: 0F.

Type Max length
string 2

Frame Length (decimal) lin.frames.items.length

Length of the frame in decimal.

Type Minimum Maximum
integer 1 8

Checksum Type lin.frames.items.checksum_type

Type of the checksum used on the LIN frame.

Type Default Options
integer 0 Enhanced: 0 Classic: 1

Configuration explained

This section contains additional information and examples.

The LIN controller expects default data lengths and checksums as explained in LIN . LIN-frames using
a different configuration (length, checksum or both) can be explicitly configured using the frame table.

Note: LIN frames satisfying the default expected configuration do not need to be inserted in the frame
table.

0.4. Configuration 51

CANedge2 GNSS Docs, Release FW 01.07.05

0.4.6.3 Transmit

This page documents the transmit configuration

Configuration file fields

This section is autogenerated from the Rule Schema file.

Name lin.transmit.items.name

Optional transmit rule name.

Type Max length
string 16

State lin.transmit.items.state

Disabled transmit rules are ignored.

Type Default Options
integer 1 Disable: 0 Enable: 1

Frame ID (hex) lin.transmit.items.id

Type Max length
string 2

Data (hex) lin.transmit.items.data

Type Max length
string 16

Configuration explained

This section contains additional information and examples.

The interpretation of the transmit list depends on the configuration of LIN bus mode:

Publisher mode

The number of bytes entered in the data field determines the interpretation of the transmission frame:

Length of data is zero

The transmit is a SUBSCRIBE frame, meaning that a Subscriber on the bus is expected to provide the
data payload (satisfying the frame table).

52 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Length of data is above zero

The transmit is a PUBLISH frame, meaning that the CANedge provides the data payload.

In Publisher mode, the CANedge schedules the frame transmissions configured by the period and delay.

Warning: Be aware that transmit uses period and delay to schedule transmissions. This is a
different concept than what is used by LDF files.

Subscriber mode

In Subscriber mode, the CANedge awaits a SUBSCRIBE frame with a matching ID from the bus
Publisher node. The number of bytes provided shall satisfy the frame table.

Warning: If the transmit list contains multiple frames using the same ID, then only the first entry
is used.

0.4.6.4 Topology

A LIN-bus consists of a Publisher node and one or more Subscriber nodes. The Publisher controls
scheduling of messages on the LIN-bus, and the Subscriber nodes react to the emitted messages.

A message on the LIN-bus can either be a PUBLISH message, in which case Publisher node transmits
both the message ID and data, or a SUBSCRIBE message, where the Publisher node only emits the
message ID and one of the Subscriber nodes fill the data section of the message.

The configuration of the LIN network shall ensure that each message has one producer, such that each
PUBLISH message is filled with data by the Publisher, while each SUBSCRIBE message has a node
connected to the network which can provide the data for the message.

An example of the bus topology with the CANedge connected as a subscriber is illustrated below:

0.4. Configuration 53

CANedge2 GNSS Docs, Release FW 01.07.05

Publisher Subscriber 1 Subscriber N CANedge

The CANedge is primarily intended to act as a Subscriber on the LIN-bus. In lieu of a Publisher node,
the CANedge can be configured to emulate a simple Publisher node. In this case, the scheduling of
messages on the network has to be done through the transmit configuration for the interface. Since only
static data can be entered in the configuration, the simple Publisher node emulation cannot perform
dynamic operations based on the LIN-bus activity.

54 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

0.4.6.5 Data length

Unless configured otherwise, the device assumes that the length of the LIN frame data payload is always
defined by the message ID (bits 5 and 6 of the identifier), as defined in the table below:

Message ID Data length
00-31 (0x00-0x1F) 2
32-47 (0x20-0x2F) 4
48-63 (0x30-0x3F) 8

This can be overridden in the configuration of the frame table.

0.4.6.6 Checksum

Supports LIN 1.3 classic checksum and LIN 2.0 enhanced checksum format. By default, all frames except
ID 0x3C and 0x3D use enhanced checksum. This can be overridden on a frame by frame basis in the
configuration of the frame table.

0.4.6.7 LIN Errors

The CANedge can detect and log errors on the LIN-bus if enabled in Logging configuration. The detected
errors are categorized as follows:

• Checksum errors

• Receive errors

• Synchronization errors

• Transmission errors

The amount of associated data depends on the type of error. E.g. synchronization errors cannot con-
tain information about the message ID, as it happens before that field is transmitted, and checksum
information is not embedded in other cases than the checksum error case.

Checksum Errors

Checksum errors denotes that the node has calculated a different checksum than the one embedded in
the LIN message on the bus. This can be an indicator of wrong configuration for the frame ID in the
CANedge frame table.

Example: In case no information is known about the LIN bus in advance, the default frame table can
be used with error logging enabled to help reverse engineer the actual frame table. Any message IDs
deviating from the standard table (and present on the LIN-bus) will get a logged entry. These IDs can
then be reconfigured in the CANedge frame table, in an attempt to find the correct settings.

Note that it can be necessary to change both message length and checksum model in order to get a valid
configuration.

0.4. Configuration 55

CANedge2 GNSS Docs, Release FW 01.07.05

Receive Errors

Receive errors are logged when a fixed part of the LIN message is not as expected, or that the node
detects a mismatch between the value being transmitted and the value sensed on the LIN-bus.

Synchronization Errors

Synchronization errors indicates an invalid synchronization field in the start of the LIN message, or that
there is a too large deviation between the configured bitrate for the node and the detected bitrate from
the synchronization field.

Transmission Errors

Transmission errors can only occur for IDs registered as SUBSCRIBER messages. If there is no node on
the LIN-bus responding to a SUBSCRIBER message, a transmission error is logged.

0.4.7 GNSS

0.4.7.1 Satellite system

This page documents the system configuration.

Table of Contents

• Configuration file fields

• Configuration explained

Configuration file fields

This section is autogenerated from the Rule Schema file.

Global Navigation Satellite System gnss

Select the GNSS system(s) to use

Type De-
fault

Options

in-
te-
ger

5 GPS: 0 Galileo: 1 GLONASS: 2 BeiDou: 3 GPS + Galileo: 4 GPS + GLONASS: 5 GPS
+ BeiDou: 6 Galileo + GLONASS: 7 Galileo + BeiDou: 8 GLONASS + BeiDou: 9 GPS
+ Galileo + GLONASS: 10 GPS + Galileo + BeiDou: 11

Configuration explained

The CANedge2 GNSS is a concurrent GNSS receiver capable of receiving and tracking signals from
multiple GNSSs (Global Navigation Satellite Systems). The system configuration allows the user to
specify the set of GNSSs to use.

56 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

0.4.7.2 Invalid signals

This page documents the invalid signals configuration.

Table of Contents

• Configuration file fields

• Configuration explained

Configuration file fields

This section is autogenerated from the Rule Schema file.

Invalid signals gnss.invalid_signals

Select if the device should discard invalid signals. E.g. the position can be invalid when no fix is obtained.

Type Default Options
integer 0 Discard invalid signals: 0 Include invalid signals: 1

Configuration explained

This section contains additional information and examples.

Several of the GNSS outputs (see Internal signals) are invalid until a GNSS fix has been obtained. The
invalid signals configuration option controls if invalid signals should be included in the GNSS module
output or discarded.

Note: Discarding invalid GNSS output signals can simplify post-processing

0.4.7.3 Alignment

This page documents the alignment configuration.

Configuration file fields

This section is autogenerated from the Rule Schema file.

IMU-mount alignment gnss.alignment

IMU-mount alignment configuration. The alignment angles should be set manually. The device can in
some cases help estimate the angles. For more information see the user manual.

Method gnss.alignment.method

Type Default Options
integer 0 Manual: 0 Estimate: 1

Z angle (0 to 360) gnss.alignment.z

Type Default Minimum Maximum
integer 0 0 360

0.4. Configuration 57

CANedge2 GNSS Docs, Release FW 01.07.05

Y angle (-90 to 90) gnss.alignment.y

Type Default Minimum Maximum
integer 0 -90 90

X angle (-180 to 180) gnss.alignment.x

Type Default Minimum Maximum
integer 0 -180 180

Configuration explained

This section contains additional information and examples.

The GNSS/IMU module uses an internal IMU coordinate system. The alignment configuration can be
used to virtually rotate the device, such that the IMU coordinate aligns with the application (e.g. car,
boat, plane, etc.) - making it easier to interpret the data generated by the IMU.

When specifically installed in a vehicle1, the device assumes a specific application coordinate system.
This specific coordinate system is denoted the vehicle coordinate system. Aligning the IMU and vehicle
coordinate systems is required when using sensor-fusion. The device can help estimate the rotation
needed to align the two coordinate systems (see Method).

Below figures define the IMU and vehicle coordinate systems. Both coordinate systems are right-handed
with the Z-axis pointing up.

Fig. 3: IMU coordinate system (device top view) Fig. 4: Vehicle coordinate system (vehicle top
view)

1 A vehicle is defined as an application with dynamics equivalent to those of a passenger car

58 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Method

The device supports two alignment methods:

• Manual

• Estimate

Manual

Using the Manual alignment method, the alignment angles are provided and entered by the user. The
device applies these alignments (rotations) to virtually rotate the device. The alignment is entered as
Z/Y/X alignments, see Alignment Z/Y/X .

Estimate

When installed in a vehiclePage 58, 1, the device can help estimate the alignment angles (rotations) needed
to align the IMU and vehicle coordinate systems. To be able to complete the estimation, the vehicle
needs to undergo sufficient dynamics.

When active, the device generates an additional output (see ImuAlign signals) including the progress of
the estimation. The estimation is completed once the algorithm has sufficient confidence in the estimated
alignment angles. When completed, the resulting alignment estimates can be noted down and entered
using the manual alignment method.

The recommended test sequence is:

1. Install device in a fixed position in the vehicle

2. Turn on device and wait for very good GNSS signal (wait 1-3 minutes)

3. Perform a test drive with at least 10 right turns and 10 left turns (each preferably 90° or more)

4. Turn off device, extract log file(s) and decode (see Internal signals) to obtain estimation results

See Example 2 (estimate) for an example on how to interpret the results.

Note: All other GNSS/IMU outputs are disabled when the estimate method is enabled.

Alignment Z/Y/X

The Z, Y and X alignment angles represent the Euler-angles required to rotate the application coordinate
system to the IMU coordinate system. It is generally up to the user to define the application coordinate
system. When specifically installed in a vehiclePage 58, 1, the application coordinate system becomes the
vehicle coordinate system (see Configuration explained).

If multiple angles are misaligned, then the Z rotation should be performed first, then the Y rotation and
finally the X rotation.

Warning: It is recommended to physically install the device such that no more than a single angle
is misaligned. Configuring multiple misaligned angles is difficult. If installed in a vehiclePage 58, 1 and
multiple misalignments cannot be avoided, consider using the Estimate method.

0.4. Configuration 59

CANedge2 GNSS Docs, Release FW 01.07.05

Example 1 (manual)

The device is installed in a vehiclePage 58, 1 with the IMU and vehicle coordinate systems not aligned as
illustrated in the left Figure. The alignment angles required, to align the two coordinate systems, are
determined by imagining that the vehicle coordinate system is rotated such that it becomes oriented as
the IMU coordinate system.

In this example, only alignment of Z is required. Below right Figure illustrates how the vehicle coordinate
system is rotated by -30° to align with the IMU coordinate system.

As defined in the Configuration file fields, the valid range of the Z angle specifically is 0∘ − 360∘. To
configure a Z misalignment angle of −30∘, we calculate the equivalent angle to 360∘ − 30∘ = 330∘.

Fig. 5: Orientation
Fig. 6: Alignment

The resulting configuration becomes:

"alignment": {
"method": 0,
"z": 330,
"y": 0,
"x": 0

}

Example 2 (estimate)

In this example, the device is physically installed in a vehicle with an orientation roughly equal to the
one illustrated in Example 1 , i.e. placed flat with a Z-angle of ≈ 330∘.

The alignment Method is set to Estimate and the recommended test sequence is completed.

The results generated by the device (see ImuAlign signals) are illustrated below (note that it is not
necessary to plot these to use the result).

After a little less than 500 seconds, the estimation algorithm reaches high confidence in the estimated
angles (status becomes Fine). At this point, the resulting angle estimates can be noted down and entered
in the configuration file as manually entered alignment angles (closest integer values).

The resulting configuration becomes:

"alignment": {
"method": 0,

(continues on next page)

60 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

(continued from previous page)

"z": 322,
"y": 1,
"x": 3

}

0.4.7.4 Geofence

This page documents the geofence configuration.

Table of Contents

• Configuration file fields

• Configuration explained

Configuration file fields

This section is autogenerated from the Rule Schema file.

Geofence geofence

Geofencing configuration. Define up to four circular geofence areas

Type Max items
array 4

Item geofence.item

Latitude of the circle center (-90 to 90 deg) geofence.item.lat

Type Default Minimum Maximum
number 0 -90 90

Longitude of the circle center (-180 to 180 deg) geofence.item.lon

Type Default Minimum Maximum
number 0 -180 180

Radius (m) geofence.item.radius

Radius of the circle (m)

Type Default Minimum
integer 0 0

0.4. Configuration 61

CANedge2 GNSS Docs, Release FW 01.07.05

Configuration explained

This section contains additional information and examples.

The CANedge2 GNSS supports up to four circular geofences with configurable radiuses1. When enabled,
the device continuously calculates if the current position is inside or outside each of the configured fences.
See GnssGeofence signals for more information on the generated output.

Note: Calculating the result of geofences on the device allows for the signal to be used as Control
Signal.

Examples

Four geofences are configured as illustrated below.

The geofence state for each of the 3 positions are:

Position \ Fence state 1 2 3 4 Com-
bined

A Out-
side

Inside Out-
side

Out-
side

Inside

B Out-
side

Out-
side

Out-
side

Out-
side

Out-
side

C Out-
side

Out-
side

Out-
side

Inside Inside

0.4.7.5 Dynamic model

This page documents the dyn model configuration.

Table of Contents

• Configuration file fields

• Configuration explained

Configuration file fields

This section is autogenerated from the Rule Schema file.

Dynamic platform model gnss.dyn_model

Select the dynamic platform of the application in which the device is installed for an improved output
result

Type De-
fault

Options

inte-
ger

0 Portable (default): 0 Stationary: 2 Automotive: 4 Sea: 5 Airborne: 6 Motorbike:
10

1 An online tool for configuring circles on a map: https://www.mapdevelopers.com/draw-circle-tool.php

62 CONTENTS

https://www.mapdevelopers.com/draw-circle-tool.php

CANedge2 GNSS Docs, Release FW 01.07.05

Configuration explained

This section contains additional information and examples.

Dyn model

Defining the expected dynamics of the application in which the device is installed yields improved navi-
gation performance.

The device supports the following dynamic models:

• Portable1: Low acceleration applications

• Stationary: Static applications (no position movement)

• Automotive: Low vertical acceleration and dynamics equivalent to those of a passenger car

• Sea: Zero vertical acceleration, sea-level applications

• Airborne: High dynamic range and vertical acceleration (compared to automotive)

• Motorbike: Low vertical acceleration and dynamics equivalent to those of a motor bike

Note: The Automotive dynamic model is required to be able to enable sensor-fusion.

0.4.7.6 Sensor fusion

This page documents the sensor fusion configuration.

Table of Contents

• Configuration file fields

• Configuration explained

Configuration file fields

This section is autogenerated from the Rule Schema file.

Sensor fusion gnss.sensor_fusion

Combines GNSS and IMU data for improved navigation performance particularly in places with poor
GNSS signal conditions. Uses an automotive sensor fusion model. Requires an accurate IMU alignment
configuration.

Type Default Options
integer 0 Disable: 0 Enable: 1

1 Pedestrian could be one example of a portable application

0.4. Configuration 63

CANedge2 GNSS Docs, Release FW 01.07.05

Configuration explained

This section contains additional information and examples.

The CANedge2 GNSS supports automotive sensor-fusion, combining GNSS and IMU data for improved
navigation performance - particularly in places with poor GNSS signal conditions.

Warning:

• Sensor-fusion can only be used in automotive applications1

• Sensor-fusion requires careful configuration of the IMU-alignment angles2

Example

In this example, two CANedge devices are installed in a passenger car with the IMU-alignment angles
carefully configured. One device is configured with sensor-fusion disabled (off) and the other with sensor-
fusion enabled (on).

To demonstrate the effect of sensor-fusion, the vehicle is driven through an underground garage (no
GNSS signal). Below Figure illustrates how the device with sensor-fusion enabled (on) is able to estimate
(dead-reckoning) the route through the garage without any GNSS signal. Contrarily, the device with
sensor-fusion disabled (off) is not able to generate any positioning data while inside the garage.

This page documents the GNSS configuration.

The CANedge2 GNSS includes a combined GNSS1 and IMU2 sensor module. For automotive applica-
tions, the device is able to combine GNSS/IMU data with an internal sensor-fusion model for improved
navigation performance.

The data generated by the GNSS/IMU module can be accessed via the Internal signals.

The GNSS configuration is split into the following sections.

0.4.7.7 Satellite system

Some GNSSs have many satellites deployed globally and are capable of providing navigation solutions on
their own. Others have fewer satellites that can be used as a supplement. The best possible positioning
information is obtained by combining signals from a variety of GNSSs. The device supports the following
GNSSs:

• GPS: Operated by the US department of defense

• GLONASS: Operated by Russian Federation department of defense

• Galileo: Operated by the European Union

• BeiDou: Operated by China
1 Applications with dynamics equivalent to those of a passenger car
2 The sensor-fusion result can be degraded if the device is misaligned a few degrees and can fail completely if the

misalignment reaches tens of degrees. If an accurate configuration cannot be provided, the result of sensor-fusion can be
worse compared to leaving the feature disabled.

1 Global Navigation Satellite System
2 Inertial Measurement Unit

64 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

0.4.7.8 Invalid signals

Configuration on how to handle invalid GNSS outputs.

0.4.7.9 Alignment

The GNSS/IMU module uses an internal coordinate system with a default orientation. The physical
mounting orientation of the CANedge may not align with the orientation of the application in which it
is installed. The alignment configuration can be used to virtually rotate the device. Aligning the device
with the application makes it easier to interpret the data generated by the IMU and is required when
using sensor-fusion.

0.4.7.10 Geofence

The CANedge2 GNSS supports geofencing. By defining a set of geofences, the device automatically
calculates if the current position is within one of more fences. The device generates an output signal
with the calculated result, see GnssGeofence signals.

0.4.7.11 Dynamic model

The positioning information can be improved by providing the device information on the application in
which it is installed.

0.4.7.12 Sensor fusion

Sensor-fusion is an advanced feature combining GNSS and IMU data for improved navigation perfor-
mance - particularly in places with poor GNSS signal conditions.

Warning: Sensor-fusion can only be used in automotive applications.

0.4.8 Connect

This page documents the connect configuration.

The connect configuration provides parameters needed to gain network access and communicate with a
S3 server.

Warning: Make sure that the network allows S3 (e.g. port 9000) and NTP (port 123) traffic.

For a brief explanation on how the devices can access the S3 server through the network, see configura-
tion/connect/wifi/wifi_topology:Network topology.

Note: The device-to-server throughput1 is highly dependent on the device-to-server latency23.

If multiple servers are available (such as regional cloud server endpoints), make sure to select a server
with low device-to-server latency.

The connect configuration is split into the following sections.
1 The total quantity of data transferred within a unit of time
2 Time needed for a single packet transfer
3 This is particularly the case due to the limited resources of the device

0.4. Configuration 65

CANedge2 GNSS Docs, Release FW 01.07.05

0.4.8.1 WiFi

This page documents the wifi configuration

Configuration file fields

This section is autogenerated from the Rule Schema file.

Mode connect.wifi.mode

In station mode, the device can use either active or passive scanning to find APs. Using active scan, the
radio transmits a probe request and listens for responses. Using passive scan, the radio listens on each
channel for beacons sent periodically by APs.

Type Default Options
integer 0 Station mode (active scanning): 0 Station mode (passive scanning): 1

Key format connect.wifi.keyformat

The format of the password(s). Can be used to hide the sensitive credentials stored on the device.

Type Default Options
integer 0 Plain: 0 Encrypted: 1

Access points connect.wifi.accesspoint

List of access points. Connects to the first available AP in list.

Type Max items
array 4

Item connect.wifi.accesspoint.item

SSID connect.wifi.accesspoint.item.ssid

Access point SSID (name of access point)

Type Min length Max length
string 0 32

Password connect.wifi.accesspoint.item.pwd

Type Default Max length
string 64

Minimum RSSI (received signal strength indicator), 0-100% connect.wifi.accesspoint.item.
minrssi

Sets a minimum required access point signal strength. The device will not connect to the access point if
the measured signal strength is below the value of this field.

Type Default Minimum Maximum
integer 0 0 100

66 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Configuration explained

This section contains additional information and examples.

The CANedge2 GNSS is able to connect to a WiFi access point (AP). The device expects to be assigned
an IP-address by a DHCP service running on the AP.

The unique device ID becomes the device host name.

The CANedge is able to connect to access-points (AP) as illustrated below.

Station mode scan modes (mode)

The device supports active and passive scan modes to find available access points (APs).

Active mode

The device actively transmits a probe request on each channel when searching for APs. Active scan is
the fastest way to find and connect to an AP.

Passive mode

The device passively listens for beacons on each channel. Passive scan is silent, but it takes additional
time to find and connect to an AP.

Multiple WiFi access points (accesspoint)

The device supports multiple access points. The device will attempt to connect to the access points in
the prioritized order in which they are entered in the configuration file. If unable to connect to an access
point or if the signal strength is below the minimum RSSI, the device will attempt the next one from the
list. Every time the device initiates a new WiFi connection, it will cycle through the list in this manner,
starting from the top.

Using an RSSI of 0% (default) means that the device will attempt to connect to the AP, even if the
signal strength is practically non-existent.

0.4.8.2 WiFi

Configuration of how the CANedge gains network access through WiFi.

For more information on the device WiFi specification, see Connectivity.

0.4.8.3 S3

S3

This page documents the s3 server configuration.

For more information on network and the S3 interface see Connect.

Note: If a HTTPS (TLS) server Endpoint is used, see configuration/connect/s3/s3_security:S3 Security
for more information on how to set up certificates.

0.4. Configuration 67

CANedge2 GNSS Docs, Release FW 01.07.05

Configuration file fields

This section is autogenerated from the Rule Schema file.

Synchronization connect.s3.sync

This section configures how and when the device communicates with the S3 server.

Firmware, config and certificate connect.s3.sync.ota

Configures how often the device looks for firmware-, config- and certificate-over-the-air updates. Small
values may reduce performance. Time period may sometimes become longer if device is busy. Set to 0 to
disable.

Type Default Minimum Maximum Multiple of
integer 600 0 86400 5

Heartbeat connect.s3.sync.heartbeat

Configures how often the device transmits the heartbeat signal. Small values may reduce performance.
Time period may sometimes become longer if device is busy. Set to 0 to disable.

Type Default Minimum Maximum Multiple of
integer 300 0 86400 5

Log files connect.s3.sync.logfiles

Configures if the device pushes closed log files to the server. The log files are deleted from the device
when successfully uploaded.

Type Default Options
integer 1 Disable: 0 Enable: 1

Server connect.s3.server

This section contains the server connection parameters.

Endpoint connect.s3.server.endpoint

S3 server endpoint. Prefix with http:// to connect using standard http. Prefix with https:// to connect
using SSL/TLS - requires support by the server and that the server certificate is loaded onto the device.
Examples: http://192.168.0.1, https://s3.mydomain.com, https://s3.amazonaws.com, http://s3-us-east-
2.amazonaws.com.

Type Max length
string 128

Port connect.s3.server.port

S3 server port. Examples: 80 (http), 443 (https), 9000 (custom).

Type Minimum Maximum
integer 0 65535

Bucket name connect.s3.server.bucket

S3 server bucket name. Examples: logbucket, fleetbucket, testbucket.

Type Max length
string 64

68 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Region connect.s3.server.region

S3 server region. Example: us-east-1.

Type Min length Max length
string 0 32

Request style connect.s3.server.request_style

Virtual-hosted-style or path-style S3 requests. Virtual hosted-style format: “http://[BUCKET-
NAME].[DOMAIN]/[OBJECT-NAME]”. Path-style format: “http://[DOMAIN]/[BUCKET-
NAME]/[OBJECT-NAME]”

Type Default Options
integer 0 Path-style: 0 Virtual hosted-style: 1

AccessKey connect.s3.server.accesskey

S3 server access key ID. Example: PRDDKN8R6PAAOGTEI53E

Type Min length Max length
string 3 128

SecretKey format connect.s3.server.keyformat

The format of the secret key. Can be used to hide the secret key stored on the device.

Type Default Options
integer 0 Plain: 0 Encrypted: 1

SecretKey connect.s3.server.secretkey

Type
string

Signed payload connect.s3.server.signed_payload

Include payload checksum in signature. Reduces device upload performance.

Type Default Options
integer 0 Off: 0 On: 1

Configuration explained

This section contains additional information and examples.

0.4. Configuration 69

CANedge2 GNSS Docs, Release FW 01.07.05

Request-style

S3 supports two different request styles path and virtual hosted. The device supports both styles.

With the virtual hosted style, the subdomain is specific to the bucket, which makes it possible to use
DNS to map a specific bucket to an IP address.

Warning: Some S3 servers may only support one of the two request formats.

Path-style http header example:

GET /[BUCKET_NAME]/[OBJECT_NAME] HTTP/1.1
Host: [DOMAIN]
...

Virtual hosted-style http header example:

GET /[OBJECT_NAME] HTTP/1.1
Host: [BUCKET_NAME].[DOMAIN]
...

Configuration of how the CANedge should communicate with a S3 server.

See the following sections for more information on the S3 interface and how to use it with the CANedge:

• Overview of the S3 interface

• S3 server types

• S3 security

• S3 device management

The CANedge device uses a JSON file placed on the memory card for configuration.

The JSON format makes it easy to configure the device using custom tools, scripts, JSON editors or
plain text editors. The configuration rules (min, max, . . .) are defined using a JSON Schema, which is
also stored on the memory card.

The Rule Schema serves as a guide for populating the Configuration File - and for automatically validating
a Configuration File. Both the Configuration File and Rule Schema are automatically generated by the
device if either is not found on the memory card.

Note: The default configuration can be restored by deleting the existing Configuration File from the
memory card and powering the device

Note: JSON files and JSON Schema rules are supported by most programming/scripting languages,
making it easy to automate generation/validation of the device configuration in custom tools

70 CONTENTS

https://json-schema.org/

CANedge2 GNSS Docs, Release FW 01.07.05

Naming

The config and schema are placed in the root of the memory card and named as follows:

• Configuration File: config-[FIRMWARE_MAJOR].[FIRMWARE_MINOR].json

• Rule Schema: schema-[FIRMWARE_MAJOR].[FIRMWARE_MINOR].json

With [FIRMWARE_MAJOR] and [FIRMWARE_MINOR] taken from the device firmware version.

The firmware patch number is not included in the file naming as patches are guaranteed not to change
the structure of the device configuration. For more information on the firmware versioning system, refer
to the Firmware section.

Example: If the firmware version is 01.02.03, then the config and schema files are named config-01.
02.json and schema-01.02.json, respectively.

0.4. Configuration 71

CANedge2 GNSS Docs, Release FW 01.07.05

Fig. 7: The trace legends refer directly to the signal names, see ImuAlign signals.

72 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

Fig. 8: Four fences (1-4) and 3 positions (A, B, C)

Fig. 9: Position of garage marked by a black rectangle. Vehicle enters garage from the left and exits to
the right.

0.4. Configuration 73

CANedge2 GNSS Docs, Release FW 01.07.05

0.5 Filesystem

0.5.1 Device file

A Device File (device.json) is located in the root of the SD-card with info on the device. The content
of the Device File is updated when the device powers on.

{
"id": "4F07A3C3",
"type": "0000005F",
"kpub": "l27UKi4ehjpxxEdmRstBk5UaqSGQYnfylzUNs9EOoJfDodvr/

→˓PqNnMrz61IxzrBfFTmuhw2K2cJ4q60iFiYM8w==",
"fw_ver": "01.01.02",
"hw_ver": "00.03/00.00",
"cfg_ver": "01.01",
"cfg_name": "config-01.01.json",
"cfg_crc32": "9ECC0C10",
"sch_name": "schema-01.01.json",
"log_meta": "Truck1",
"space_used_mb": "36/7572",
"sd_info": "000353445341303847801349A26A0153",
"sd_used_lifespan": "2",
"gnss_fw_ver": "1.23",
"wifi_fw_ver": "19.3.0/19.6.1",
"wifi_mac": "F8-F0-05-94-39-2E",
"certs_server_sha1": ["5BDA1A96DF69FEB62E2E0A61BD2672C03CAA9473"]

}

Additional content may be added to the device.json in future firmware updates.

0.5.1.1 Fields explained

Base

• id: Device unique ID number

• type: Device type (CANedge2 GNSS = 0000005F)

• kpub: Device public key in Base-64 format

• fw_ver: Firmware version

• hw_ver: Hardware version

• cfg_ver: Configuration File version

• cfg_name: Configuration File name

• cfg_crc32: Configuration File checksum

• sch_name: Configuration Rule Schema name

• log_meta: Configurable device string (e.g. application name)

• space_used_mb: The SD-card used space of the total in MB ([used]/[total])

• sd_info: Information about the SD card, including unique serial number in hex

• sd_used_lifespan: The SD-card self-reported health in percent of lifetime used, or ? if unavailable

74 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

GNSS

• gnss_fw_ver: GNSS module firmware version

WiFi

• wifi_fw_ver: WiFi module firmware version

• wifi_mac: WiFi module MAC address

Server

• certs_server_sha1: List of SH1 hashes of the loaded TLS certificates (see configura-
tion/connect/s3/s3_security:Enabling server identity authentication)

0.5.2 Log file

This page documents the log files stored on the device SD-card.

0.5.2.1 Format

The CANedge logs data in the industry standard MDF4 format, standardized by ASAM. MDF4 is a
binary format which allows compact storage of huge amounts of measurement data. It is specifically
designed for bus frame logging across e.g. CAN-bus, LIN-bus and Ethernet. MDF4 is widely adopted
by the industry and supported by many existing tools.

Specifically, the CANedge uses MDF version 4.11 (file extension: *.MF4).

Timestamps

Each record is timestamped with 50 us resolution2.

Finalization & sorting

The CANedge stores log files as unfinalized and unsorted to enable power safety. Finalization3 and
sorting4 can be done as a post-processing step to speed up work with the files.

Note: It may be necessary to finalize/sort a log file before it is loaded into some MDF tools

Additional metadata about the device is captured in the files, including many of the fields exposed in
the device file.

• serial number: Device unique ID number

• device type: Device type (CANedge2 GNSS = 0000005F)

• firmware version: Firmware version

• hardware version: Hardware version

• config crc32 checksum: Configuration File checksum

• storage total: The SD-card total space in MB
2 Changes to the system time (RTC) caused by the NET RTC auto sync take effect on the next file split, or after a

power-cycle.
3 The MDF file header includes information on how to finalize the MDF file before use
4 Sorting refers to an organization of the log records which enable fast indexing. It is not related to sorting of timestamps.

0.5. Filesystem 75

CANedge2 GNSS Docs, Release FW 01.07.05

• storage free: The SD-card free space in MB

• storage id: The SD-card identifier

• session: File session counter

• split: File split counter

• comment: Configurable device string (e.g. application name)

0.5.2.2 Naming

Log files are organized by the following path structure:

LOG/[DEVICE_ID]/[SESSION_COUNTER]/[SPLIT_COUNTER].[FILE_EXTENSION]

The path is constructed from the following parts:

• LOG: Static directory name used to store log files

• DEVICE_ID: Globally unique device ID

• SESSION_COUNTER: Increased by one for each power cycle1

• SPLIT_COUNTER: Resets to 1 on each power cycle and increased by one for each file split

• FILE_EXTENSION: The file extension selected in the configuration (MF4|MFC|MFE|MFM)

For details on log file splits and related limits, see the Logging Configuration section.

File extension

The default extension is MF4. With compression/encryption enabled the extension changes:

Compression enabled Encryption enabled File extension
.MF4

X .MFC
X .MFE

X X .MFM

With both compression and encryption enabled, the data is first compressed, then encrypted.

For details on compression and encryption, see the Logging Configuration section.

Path example

Example: Log file path: LOG/3B912722/00000004/00000189.MF4

• LOG: The static directory common for all log files

• 3B912722: The unique ID of the device which generated the log file

• 00000004: Generated during the 4th session / power cycle

• 00000189: Is log file number 189 of the session

• MF4: File type
1 The session counter is also increased by one if the counter of splits in one session exceeds 256

76 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

0.5.2.3 Generic header

While plain MDF files are saved as MF4, encryption and/or compression uses a custom header to identify
and store relevant information for the files. All file headers consist of a generic 20 byte header, followed
by any specialized fields.

The generic header starts with an identifying sequence of the ASCII code for Generic File5. Following
are information of the header version (V Ge, currently 0x01), file type version (V FT), file type (FT) and
file sub-type (FTI). Finally, the device ID is stored. All numbers stored in the generic header are unsigned
and big endian formatted.

|<- 8 bytes ->|
| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte |
| 'G' 'e' 'n' 'e' 'r' 'i' 'c' ' '->|
|<-'F' 'i' 'l' 'e' | V Ge | V FT | FT | FTI |
| Device ID (Uint32, BE) |

If required, a generic file may contain a footer as well, as specified by the format.

Encrypted files

Encrypted files have a file type of 0x11. The device supports AES encryption in Galois Counter Mode
(GCM), with a file sub-type of 0x01. The current version of the format is 0x00. The encrypted file
header stores three additional fields:

• The 12 bytes long initialization vector

• The number of hashing iterations for the key, stored as a 32 bit unsigned number in big endian
format

• 16 bytes of salt data for the hashing of the key

|<- 8 bytes ->|
| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte |
| IV/Nonce ->|
|<- IV/Nonce | Iterations (Uint32, BE) |
| Salt ->|
|<- Salt |

The encrypted file contains an additional footer. This stores the 16 byte tag generated when AES runs
in GCM mode. When decrypting, this tag should be checked to ensure the validity of the decrypted
data. There is no alignment requirement for the footer.

|<- 8 bytes ->|
| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte |
| GCM Tag ->|
|<- GCM Tag |

5 Generic File maps to 12 bytes of ASCII, with no zero termination of the string.

0.5. Filesystem 77

CANedge2 GNSS Docs, Release FW 01.07.05

Compressed files

Compressed files have a file type of 0x22. At present, the only supported compression format is heatshrink
based. This is denoted by a file sub-type of 0x01. The current version of the format is 0x01. The
additional header data are two unsigned 32 bit numbers: Lookahead and window sizes.

|<- 8 bytes ->|
| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte |
| Lookahead (Uint32, BE) | Window (Uint32, BE) |

Following the header is the compressed data stream. Following the data stream is a footer with a
checksum over the compressed data. There is no alignment requirement for the footer. The checksum
format is often found online as CRC32 JAM or JAMCRC.

|<- 4 bytes ->|
| Byte | Byte | Byte | Byte |
| CRC32 (Uint32, BE) |

Encrypted and compressed files

If the file is both encrypted and compressed, it has been processed in two steps/streams. First the data
is piped through a compression step, next it is piped through an encryption step. Each step can have its
own version.

The SD-card filesystem is organized as illustrated by below example1:

/
config-XX.XX.json
schema-XX.XX.json
uischema-XX.XX.json
device.json
meta/

...
LOG/

[DEVICE_ID]
00000001

00000001.MF4
00000002.MF4
...
...

00000002
00000001.MF4
00000002.MF4
...
...

...

...

• config-XX.XX.json: Configuration file (device configuration)

• schema-XX.XX.json: Rule Schema file (configuration rules)

• uischema-XX.XX.json: UI Schema file (configuration presentation)

• device.json: Device file (device information)

• LOG/: Directory containing log files (see Naming for more information)
1 XX.XX is replaced by the firmware MAJOR and MINOR version numbers

78 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

• meta/: Temporary folder for setting the internally stored session counter (see Setting session
counter for more information)

Note: Default Configuration, Schema, UISchema, and Device files are automatically re-created if deleted
by the user.

Note: The device will store the information in the meta folder internally and delete the folder if present
during startup

0.5.3 Replacing SD-card

The SD-card is not locked to the device. If the card is replaced (see SD-card hardware requirements), be
aware of the following points:

• If the card is replaced by a card from another CANedge, it is recommended to clear the card

• The configuration file can optionally be copied to the new card (else a default is automatically
created)

0.5.4 Setting session counter

Warning: Manually setting the session counter is usually only relevant when the internal battery
has been replaced.

To manually set the session counter, create the meta folder in the root of the SD-card. Inside the folder,
create a file called meta_log.json with the following template:

{
"session": 123

}

Replace 123 with the desired next session counter value.

0.5. Filesystem 79

CANedge2 GNSS Docs, Release FW 01.07.05

0.6 Internal signals

This page documents the signals internally generated by the CANedge.

The signals are available through the internal CAN-bus channel. The signal messages can be filtered,
scaled, etc. as with the physical CAN-bus channels. See CAN for more information on CAN-bus channel
configuration.

The CAN-internal database file (.DBC) can be downloaded from the online documentation.

Note: Multiple variants of the CANedge share the same signal database. Not all signals are available
for all variants.

The remaining of this section is autogenerated from the database (DBC) file.

0.6.1 Messages

Message Format ID (DEC) ID (HEX) Bytes Description
TimeExternal Standard 5 0x005 8 Time received,

event
GnssStatus Standard 101 0x065 1 GNSS status, 5

Hz
GnssTime Standard 102 0x066 6 GNSS time, 5 Hz
GnssPos Standard 103 0x067 8 GNSS position, 5

Hz
GnssAltitude Standard 104 0x068 4 GNSS altitude, 5

Hz
GnssAttitude Standard 105 0x069 8 GNSS attitude, 5

Hz
GnssDistance Standard 106 0x06A 3 GNSS distance, 1

Hz
GnssSpeed Standard 107 0x06B 5 GNSS speed, 5 Hz
GnssGeofence Standard 108 0x06C 2 GNSS ge-

ofence(s), 1
Hz

ImuAlign Standard 110 0x06E 7 IMU alignment, 1
Hz

ImuData Standard 111 0x06F 8 IMU data, 5 Hz

0.6.2 Signals

0.6.2.1 TimeExternal signals

Signal Start Length Factor Offset Unit Description
InternalEpoch 0 32 1 1577840400𝑠 Internal epoch time
ExternalEpoch 32 32 1 1577840400𝑠 External epoch time

80 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

0.6.2.2 GnssStatus signals

Signal Start Length Factor Offset Unit Description
FixType 0 3 1 0 Fix type
Satellites 3 5 1 0 Number of satellites used

FixType values

Value Description
0 No fix
1 Dead reckoning only
2 2D-fix
3 3D-fix
4 GNSS + dead reckoning combined
5 Time only fix

0.6.2.3 GnssTime signals

Signal Start Length Factor Offset Unit Description
TimeValid 0 1 1 0 Time validity
TimeConfirmed 1 1 1 0 Time confirmed
Epoch 8 40 0.001 1577840400𝑠 Epoch time

TimeValid values

Value Description
0 Invalid
1 Valid

TimeConfirmed values

Value Description
0 Unconfirmed
1 Confirmed

0.6.2.4 GnssPos signals

Signal Start Length Factor Offset Unit Description
PositionValid 0 1 1 0 Position validity
Latitude 1 28 1e-06 -90 𝑑𝑒𝑔 Latitude
Longitude 29 29 1e-06 -180 𝑑𝑒𝑔 Longitude
PositionAccuracy 58 6 1 0 𝑚 Position accuracy

0.6. Internal signals 81

CANedge2 GNSS Docs, Release FW 01.07.05

PositionValid values

Value Description
0 Invalid
1 Valid

0.6.2.5 GnssAltitude signals

Signal Start Length Factor Offset Unit Description
AltitudeValid 0 1 1 0 Altitude validity
Altitude 1 18 0.1 -6000 𝑚 Altitude
AltitudeAccuracy 19 13 1 0 𝑚 Altitude accuracy

AltitudeValid values

Value Description
0 Invalid
1 Valid

0.6.2.6 GnssAttitude signals

Signal Start Length Factor Offset Unit Description
AttitudeValid 0 1 1 0 Attitude validity
Roll 1 12 0.1 -180 𝑑𝑒𝑔 Vehicle roll
RollAccuracy 13 9 0.1 0 𝑑𝑒𝑔 Vehicle roll accuracy
Pitch 22 12 0.1 -90 𝑑𝑒𝑔 Vehicle pitch
PitchAccuracy 34 9 0.1 0 𝑑𝑒𝑔 Vehicle pitch accuracy
Heading 43 12 0.1 0 𝑑𝑒𝑔 Vehicle heading
HeadingAccuracy 55 9 0.1 0 𝑑𝑒𝑔 Vehicle heading accuracy

AttitudeValid values

Value Description
0 Invalid
1 Valid

0.6.2.7 GnssDistance signals

Signal Start Length Factor Offset Unit Description
DistanceValid 0 1 1 0 Distance valid
DistanceTrip 1 23 1 0 𝑚 Distance traveled since last

reset

82 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

DistanceValid values

Value Description
0 Invalid
1 Valid

0.6.2.8 GnssSpeed signals

Signal Start Length Factor Offset Unit Description
SpeedValid 0 1 1 0 Speed valid
Speed 1 20 0.001 0 𝑚/𝑠 Speed m/s
SpeedAccuracy 21 19 0.001 0 𝑚/𝑠 Speed accuracy

SpeedValid values

Value Description
0 Invalid
1 Valid

0.6.2.9 GnssGeofence signals

Signal Start Length Factor Offset Unit Description
FenceValid 0 1 1 0 Geofencing status
FenceCombined 1 2 1 0 Combined (logical OR) state

of all geofences
Fence1 8 2 1 0 Geofence 1 state
Fence2 10 2 1 0 Geofence 2 state
Fence3 12 2 1 0 Geofence 3 state
Fence4 14 2 1 0 Geofence 4 state

FenceValid values

Value Description
0 Invalid
1 Valid

FenceCombined values

Value Description
0 Unknown
1 Inside
2 Outside

0.6. Internal signals 83

CANedge2 GNSS Docs, Release FW 01.07.05

Fence1 values

Value Description
0 Unknown
1 Inside
2 Outside

Fence2 values

Value Description
0 Unknown
1 Inside
2 Outside

Fence3 values

Value Description
0 Unknown
1 Inside
2 Outside

Fence4 values

Value Description
0 Unknown
1 Inside
2 Outside

0.6.2.10 ImuAlign signals

Signal Start Length Factor Offset Unit Description
AlignStatus 0 3 1 0 IMU-mount alignment sta-

tus
AlignXYError 3 1 1 0 IMU-mount X or Y align-

ment error
AlignZError 4 1 1 0 IMU-mount Z alignment er-

ror
AlignError 5 1 1 0 IMU-mount singularity er-

ror
AlignZ 8 16 0.01 0 𝑑𝑒𝑔 IMU-mount Z angle
AlignY 24 16 0.01 -90 𝑑𝑒𝑔 IMU-mount Y angle
AlignX 40 16 0.01 -180 𝑑𝑒𝑔 IMU-mount X angle

84 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

AlignStatus values

Value Description
0 Idle
1 Ongoing
2 Coarse
3 Fine

AlignXYError values

Value Description
0 No error
1 Error

AlignZError values

Value Description
0 No error
1 Error

AlignError values

Value Description
0 No error
1 Error

0.6.2.11 ImuData signals

Signal Start Length Factor Offset Unit Description
ImuValid 0 1 1 0 IMU status
AccelerationX 1 10 0.125 -64 𝑚/𝑠2 IMU X acceleration with a

resolution of 0.125 m/s^2
AccelerationY 11 10 0.125 -64 𝑚/𝑠2 IMU Y acceleration with a

resolution of 0.125 m/s^2
AccelerationZ 21 10 0.125 -64 𝑚/𝑠2 IMU Z acceleration with a

resolution of 0.125 m/s^2
AngularRateX 31 11 0.25 -256 𝑑𝑒𝑔/𝑠 IMU X angular rate with a

resolution of 0.25 deg/s
AngularRateY 42 11 0.25 -256 𝑑𝑒𝑔/𝑠 IMU Y angular rate with a

resolution of 0.25 deg/s
AngularRateZ 53 11 0.25 -256 𝑑𝑒𝑔/𝑠 IMU Z angular rate with a

resolution of 0.25 deg/s

0.6. Internal signals 85

CANedge2 GNSS Docs, Release FW 01.07.05

ImuValid values

Value Description
0 Invalid
1 Valid

86 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

0.7 Firmware

0.7.1 Download Firmware Files

See the online documentation for the latest Firmware Files and changelog.

Firmware Files can be downloaded from the online documentation.

This page describes how to upgrade the device firmware.

0.7.2 Firmware versioning & naming

The device firmware versioning is inspired by the semantic versioning system.

Each firmware is assigned three two digit numbers: MAJOR, MINOR, PATCH:

• MAJOR: Incompatible changes (e.g. requires major changes to the Configuration File)

• MINOR: New backwards-compatible functionality (e.g. new fields in the Configuration File)

• PATCH: Backwards-compatible bug fixes (e.g. no changes to the Configuration File)

The firmware files available for download are zipped with naming as follows:

firmware-[MAJOR].[MINOR].[PATCH].zip

Example:

firmware-01.02.03.zip

0.7.3 Firmware Update

The device supports in-the-field firmware updates.

Note: The firmware update process is power safe (tolerates power failures). However, it is recommended
to ensure that the process completes

0.7.3.1 Update process

The firmware update process begins when the device is powered and has been prepared with a new
Firmware File:

1. Power is applied to device

2. The green LED comes on (can take a few seconds)

3. If the firmware is valid, the green LED blinks 5 times, else the red LED blinks 5 times

4. The green LED remains solid while the firmware is updated (~30 sec)

5. If the update is successful, the green LED blinks 5 times, else the red LED blinks 5 times

6. The updated firmware is started and the device is ready for logging

7. If any external modules need to be updated, then these updates are applied now (see Update of
external modules)

Note: The green LED comes on later than usual when a firmware update is initiated

0.7. Firmware 87

CANedge2 GNSS Docs, Release FW 01.07.05

Note: The device automatically removes any Firmware Files when the update has completed. Firmware
Files should never be manually deleted during the update process.

Update of external modules

External modules are updated while the device is (partly) operational. Updating external modules can
take from a few minutes and up to 1 hour. If power is lost during update of external modules, the update
resumes next time the device powers on.

0.7.3.2 Configuration update

If a device is updated to a firmware version with a different MAJOR or MINOR number, then the Configura-
tion File also needs to be updated (i.e. with an updated name and structure matching the new firmware).
The Configuration File is named as described in the Configuration section. A default Configuration File
and corresponding Rule Schema are contained in the firmware-package (zip).

To modify an existing Configuration File, it can be useful to load the new Rule Schema in an edi-
tor together with the old Configuration File. After making the necessary updates, save the modified
Configuration File with a name matching the new version.

Note: The firmware can be updated without providing a new compatible Configuration File. In this
case, the device creates a default Configuration File on the SD-card

0.7.3.3 Update from SD-card

The firmware can be updated by placing a Firmware File on the SD-card and powering the device:

1. Download the firmware zip (Firmware File + Configuration File + Rule Schema)

2. Place the firmware.bin file on the SD-card (root directory)

3. If MAJOR/MINOR is different, update the Configuration File and place it on the SD-card

4. Power on the device and wait for the update process to complete

Note: An incompatible firmware image is deleted and does not break the device

Example: Current firmware: 01.01.01, new firmware: 01.01.02

1. Download firmware-01.01.02.zip and unzip it

2. Copy firmware.bin to the SD-card

3. The MAJOR and MINOR versions are unchanged (no need to update the Configuration File)

4. Power on the device and wait for the update process to complete

Example: Current firmware: 01.01.01, new firmware: 01.02.01

1. Download firmware-01.02.01.zip and unzip it

2. Copy firmware.bin to the SD-card

3. Update the Configuration File (or use the default created by the firmware update)

4. Power on the device and wait for the update process to complete

88 CONTENTS

CANedge2 GNSS Docs, Release FW 01.07.05

0.7.3.4 Update over-the-air

The device firmware can be updated remotely through the S3 interface. See the configura-
tion/connect/s3/s3_management:Firmware Over-The-Air (FOTA) for more information.

0.7. Firmware 89

	CANedge2 GNSS documentation
	About this manual
	Purpose
	Notation used
	Admonitions
	Number bases

	Legal information
	Usage warning
	Terms & conditions
	Electromagnetic compatibility
	Voltage transient tests
	Contact details

	Specification
	Logging
	Real-time clock (RTC)
	CAN-bus (x2)
	LIN-bus (x2)
	GNSS
	Connectivity
	Electrical
	Mechanical

	Hardware
	Installation
	Supply quality
	Grounding
	Cable shielding
	CAN ISO 11898-2
	CAN-bus stub length
	Mounting

	Connector
	Pinout
	Supply
	GND
	5 V Supply Output
	CAN L/H
	LIN VBAT
	LIN Data

	Wiring example

	LED
	PWR
	CH1 / CH2
	MEM
	GPS
	WFI

	SD-card
	Type
	Lifetime

	Enclosure
	Technical drawings

	Label
	Hardware version 00.03

	Configuration
	General
	Configuration file fields
	Configuration explained
	Device meta data
	Security

	Logging
	Configuration file fields
	Configuration explained
	File split
	Compression
	Encryption
	Error Frames

	Real-Time-Clock
	Configuration file fields
	Configuration explained
	Synchronization methods (sync)

	Secondary port
	Configuration file fields
	Configuration explained

	CAN
	General
	Configuration file fields
	Configuration explained

	Physical
	Configuration file fields
	Configuration explained
	Bit-rate configuration

	Filter
	Configuration file fields
	Configuration explained
	Filter processing
	Filter state
	Filter types
	Filter method
	Filter range method
	Filter mask method
	Filter list examples
	Message Prescaling
	Count
	Time
	Data

	Transmit
	Configuration file fields
	Configuration explained
	Period and delay

	Heartbeat
	Configuration file fields
	Configuration explained
	Payload format

	Control
	Configuration file fields
	Configuration explained
	Examples

	LIN
	Physical
	Configuration file fields
	Configuration explained

	Frame Table
	Configuration file fields
	Configuration explained

	Transmit
	Configuration file fields
	Configuration explained
	Publisher mode
	Subscriber mode

	Topology
	Data length
	Checksum
	LIN Errors
	Checksum Errors
	Receive Errors
	Synchronization Errors
	Transmission Errors

	GNSS
	Satellite system
	Configuration file fields
	Configuration explained

	Invalid signals
	Configuration file fields
	Configuration explained

	Alignment
	Configuration file fields
	Configuration explained
	Method
	Manual
	Estimate
	Alignment Z/Y/X
	Example 1 (manual)
	Example 2 (estimate)

	Geofence
	Configuration file fields
	Configuration explained
	Examples

	Dynamic model
	Configuration file fields
	Configuration explained
	Dyn model

	Sensor fusion
	Configuration file fields
	Configuration explained
	Example

	Satellite system
	Invalid signals
	Alignment
	Geofence
	Dynamic model
	Sensor fusion

	Connect
	WiFi
	Configuration file fields
	Configuration explained
	Station mode scan modes (mode)
	Multiple WiFi access points (accesspoint)

	WiFi
	S3
	S3
	Configuration file fields
	Configuration explained
	Request-style

	Filesystem
	Device file
	Fields explained

	Log file
	Format
	Naming
	Generic header
	Encrypted files
	Compressed files
	Encrypted and compressed files

	Replacing SD-card
	Setting session counter

	Internal signals
	Messages
	Signals
	TimeExternal signals
	GnssStatus signals
	FixType values

	GnssTime signals
	TimeValid values
	TimeConfirmed values

	GnssPos signals
	PositionValid values

	GnssAltitude signals
	AltitudeValid values

	GnssAttitude signals
	AttitudeValid values

	GnssDistance signals
	DistanceValid values

	GnssSpeed signals
	SpeedValid values

	GnssGeofence signals
	FenceValid values
	FenceCombined values
	Fence1 values
	Fence2 values
	Fence3 values
	Fence4 values

	ImuAlign signals
	AlignStatus values
	AlignXYError values
	AlignZError values
	AlignError values

	ImuData signals
	ImuValid values

	Firmware
	Download Firmware Files
	Firmware versioning & naming
	Firmware Update
	Update process
	Update of external modules

	Configuration update
	Update from SD-card
	Update over-the-air

