
CANedge1 Docs, 01.09.01
Release 01.09.01

CSS Electronics

Mar 14, 2025

CONTENTS

0.1 About this manual . 1
0.1.1 Purpose . 1
0.1.2 Notation used . 1

0.2 Specification . 2
0.2.1 Logging . 2
0.2.2 Real-time clock (RTC) . 2
0.2.3 CAN-bus (x2) . 2
0.2.4 LIN-bus (x2) . 3
0.2.5 Routing . 3
0.2.6 Electrical . 4
0.2.7 Mechanical . 4

0.3 Hardware . 5
0.3.1 Installation . 5
0.3.2 Connectors . 6
0.3.3 LED . 9
0.3.4 SD-card . 10
0.3.5 Enclosure . 10
0.3.6 Label . 10

0.4 Configuration . 12
0.4.1 General . 12
0.4.2 Logging . 16
0.4.3 Real-Time-Clock . 18
0.4.4 Secondary port . 21
0.4.5 CAN . 22
0.4.6 LIN . 51
0.4.7 Routing . 58

0.5 Filesystem . 64
0.5.1 Device file . 64
0.5.2 Log file . 64
0.5.3 Replacing SD-card . 68
0.5.4 Setting session counter . 69

0.6 Internal signals . 70
0.6.1 Messages . 70
0.6.2 Signals . 71

0.7 Firmware . 78
0.7.1 Download Firmware Files . 78
0.7.2 Firmware versioning & naming . 78
0.7.3 Firmware Update . 78

0.8 Legal information . 81
0.8.1 Usage warning . 81
0.8.2 Terms & conditions . 81
0.8.3 Electromagnetic compatibility . 81
0.8.4 Voltage transient tests . 81
0.8.5 Contact details . 81

i

ii

CANedge1 Docs, 01.09.01, Release 01.09.01

0.1 About this manual

0.1.1 Purpose
This manual describes the functionality of the CANedge1 (firmware 01.09.01) with focus on:

1. Hardware & installation

2. Configuration

3. Firmware upgrade

This manual does not provide details on available software/API tools.

ò Note

Most of the information contained in this manual is found in the configuration sections.

0.1.2 Notation used
The following notation is used throughout this documentation:

0.1.2.1 Admonitions

ò Note

Used to highlight supplementary information

. Warning

Used if incorrect use may result in unexpected behaviour

³ Danger

Used if incorrect use may result in damage to the device or personal injury

0.1.2.2 Number bases

When relevant, the base of a number is written explicitly as 𝑥𝑦, with 𝑦 as the base.

The following number bases are used throughout this documentation:

• Binary (𝑦 = 2). Example: The binary number 10101010 is written as 101010102

• Decimal (𝑦 = 10). Example: The decimal number 170 is written as 17010

• Hexadecimal (𝑦 = 16). Example: The hexadecimal number 𝐴𝐴 is written as 𝐴𝐴16

The value of a number is the same regardless of the base (e.g. the values in above examples are equal
101010102 = 17010 = 𝐴𝐴16). However, it is sometimes more convenient to represent the number using a
specific base.

0.1. About this manual 1

CANedge1 Docs, 01.09.01, Release 01.09.01

0.2 Specification

0.2.1 Logging
• Storage

– Extractable industry grade micro SD-card (8-32GB)

– Standard FAT file system (can be read directly by a PC)

– Logging to industry standard .MF4 (ASAM MDF4) file format

• Organization

– Log files grouped by session (power cycle)

– Log files split based on file configurable size or time

– Optional cyclic-logging mode (oldest log file is deleted when memory is full)

• Performance

– Simultaneous logging from 2 x CAN-bus + 2 x LIN-bus

– Message time stamping with 50 us resolution

– High message rate1

– Optional data compression (LZSS)

• Security

– Globally unique device ID with customizable device name

– Power safe (device can be disconnected during operation without risk of data corruption)

– Optional end-2-end data encryption (AES128-GCM)

0.2.2 Real-time clock (RTC)
• High precision real-time clock retains date and time when device is off

• The real-time clock can be automatically synced from various sources2

0.2.3 CAN-bus (x2)
• Physical

– Two physical CAN-bus interfaces

– Industry standard DB9 (D-sub9) connectors

• Transceiver

– Compliant with CAN Protocol Version 2.0 Part A, B and ISO 11898-1

– Compliant with ISO CAN FD and Bosch CAN FD

– Ideal passive behavior when unpowered (high impedance / no load)

– Short circuit protection

– Transient protection

– TXD dominant timeout (prevents network blocking in the event of a failure)

– Data rates up to 5Mbps3

• Controller
1 See the performance tests.
2 Synchronization sources depend on device variant. See configuration section for more information.
3 Supported FD bit-rates: 1M, 2M, 4M.

2 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

– Based on MCAN IP from Bosch

– Bit-rate: Auto-detect (from list4), manual simple (from list5) or advanced (bit-timing)

– 128 standard CAN ID + 64 extended CAN ID filters (per interface)

– Advanced filter configuration: Range, mask, acceptance, rejection

– Configurable transmit messages, single shot or periodic (up to 224 messages6)

– Message down-sampling based on:

∗ Count

∗ Time

∗ Change in data

– Support for Remote-Transmission-Request (RTR) frames

– Silent modes: Restricted (acknowledge only) or monitoring (transmission disabled)

– Supports all CAN based protocols (J1939, CANopen, OBD2, NMEA 2000, . . .)7

• Application

– Cross-channel control-message for start/stop of reception/transmission

0.2.4 LIN-bus (x2)
• Physical

– Two physical LIN-bus interfaces

– Industry standard DB9 (D-sub9) connectors

– No internal diode and resistor for publishing mode

• Transceiver

– Protection: ±8kV HBM ESD, ±1.5kV CDM, ±58V bus fault

– Supports 4V to 24V applications

– TXD dominant timeout (prevents network blocking in the event of a failure)

– Data rates up to 20kbps

• Controller

– Support for both publisher and subscriber modes

– Automatic8 and custom frame lengths

– Classic and Extended checksum formats

– Configurable transmit messages, single shot or periodic

0.2.5 Routing
• Configurable routing of messages from CAN-internal, CAN-1, CAN-2, LIN-1, and LIN-2 messages

to CAN-1 and/or CAN-29.
4 Bit-rate list: 5k, 10k, 20k, 33.333k, 47.619k, 50k, 83.333k, 95.238k, 100k, 125k, 250k, 500k, 800k, 1M.
5 Bit-rate list: 5k, 10k, 20k, 33.333k, 47.619k, 50k, 83.333k, 95.238k, 100k, 125k, 250k, 500k, 800k, 1M, 2M, 4M.
6 See Transmit for details on transmit lists limitations.
7 The device logs raw data frames.
8 Data lengths are defined by bits 4 and 5 of the LIN identifier.
9 Routing is designed for a low message throughput (e.g. 20 messages per second).

0.2. Specification 3

CANedge1 Docs, 01.09.01, Release 01.09.01

0.2.6 Electrical
• Device supply

– Channel 1 (CH1) voltage supply range: +7.0 V to +32 V DC10

– Reverse voltage protection11

– Transient voltage event protection on supply lines12

– Consumption: 0.8 W13

• Secondary port output supply14

– Channel 2 (CH2) fixed 5 V output supply (up to 1 A)15

– Supports power out scheduling to control the output state based on time of day

0.2.7 Mechanical
• Status indicated using external LEDs

• Robust and compact aluminum enclosure

• Operating temperature: -25 °C to +70 °C

• Hardware version 00.03:

– Dimensions: 44.2 x 75.0 x 20.0 mm (L x W x H)16

– Weight: ~ 70 g

• Hardware version ≤ 00.02:

– Dimensions: 50.2 x 75.4 x 24.5 mm (L x W x H)

– Weight: ~ 100 g

10 The device is supplied trough connector 1 (CH1)
11 Up to 24V
12 The transient voltage protection is designed to clamp low energy voltage events. High energy voltage events may

overheat and destroy the input protection.
13 Peak consumption during logging and active network connectivity (if supported).
14 Can be used to supply external devices.
15 The 5V output can be used to power WiFi hotspots, sensors, small actuators, external LEDs, etc.
16 Excluding any external antennas and flanges.

4 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

0.3 Hardware
This section contains information regarding the CANedge hardware, including installation requirements,
connector pinouts, enclosure, SD card, LEDs and label.

0.3.1 Installation
This section outlines the installation requirements that shall be satisfied.

Table of Contents

• Supply quality

• Grounding

• Cable shielding

• CAN ISO 11898-2

• CAN-bus stub length

• Mounting

0.3.1.1 Supply quality

The nominal voltage shall be kept within specifications at all times. The device is internally protected
against low energy voltage events which can be expected as a result of supply wire noise, ESD and
stub-wire inductance.

If the supply line is shared with inductive loads, care should be taken to ensure high energy voltage events
do not reach the device. Automotive environments often include several sources of electrical hazards,
such as load dumps (disconnection of battery while charging), relay contacts, solenoids, alternator, fuel
injectors etc. The internal protection circuitry of the device is not capable of handling high energy
voltage events directly from such sources.

0.3.1.2 Grounding

ISO 11898-2 tolerates some level of ground offset between nodes. To ensure the offset remains within
range, it is recommended to use a single point ground reference for all nodes connected to the CAN-bus.
This may require the ground wire to be carried along with data wires.

If a secondary CAN-bus network is connected to Channel 2, care must be taken to ensure that the ground
potentials of the two networks can safely be connected through the common ground in the device.

0.3.1.3 Cable shielding

Shielding is not needed in all applications. If shielding is used, it is recommended that a short pig-tail
be crimped to the shield end at each connector.

0.3.1.4 CAN ISO 11898-2

ISO 11898-2 defines the basic physical requirements of a high-speed CAN-bus network. Some of these
are listed below:

• Max line length (determined by bit-rate)

• Line termination (120 ohm line termination at each end of data line)

• Twisted data lines

• Ground offsets in range -2V to +7V

0.3. Hardware 5

CANedge1 Docs, 01.09.01, Release 01.09.01

0.3.1.5 CAN-bus stub length

It is recommended that the CAN-bus stub length is kept short. The stub length is defined as the length
from the ”main” data line wires to the connection point of the CAN-bus nodes.

0.3.1.6 Mounting

The device should be mounted in a way that minimizes vibration exposure and accounts for the IP-rating
of the device.

Hardware version ≥ 00.03 uses flanges for easy and robust mounting. The flanges are designed for 4 x
M3 screws and 4 x 6 mm washers.

Mounting template (PDF)

0.3.2 Connectors
This section contains information on the device connectors.

Table of Contents

• Connector front

• Wiring example

0.3.2.1 Connector front

Pinout

The CANedge uses two D-sub9 connectors for supply, 2 x CAN, 2 x LIN, and 5 V output.

6 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Fig. 1: Front view. Hardware version 00.03.

Fig. 2: Front view. Hardware version ≤ 00.02

Pin # Channel 1 (CH1) Channel 2 (CH2)
1 NC 5 V Supply Output
2 CAN 1 L CAN 2 L
3 GND GND
4 LIN Data 1 LIN Data 2
5 NC NC
6 GND (optional) GND (optional)
7 CAN 1 H CAN 2 H
8 NC NC
9 Supply & LIN1 VBAT LIN2 VBAT

The hardware 00.00 pinout can be found here.

Supply

The supply (CH1 pin 9) is used to power the device. The supply is internally protected against reverse
polarity and low-energy voltage spikes.

Refer to the Electrical Specification for more details on the device supply.

. Warning

The supply line must be protected against high-energy voltage events exceeding device limits

0.3. Hardware 7

CANedge1 Docs, 01.09.01, Release 01.09.01

GND

All GND (ground) pins are connected internally.

5 V Supply Output

The +5 V output can be used to power external devices. The power can be toggled via the device
configuration. Refer to the Electrical Specification for more details on the 5 V output.

³ Danger

Connecting external input power to this pin can permanently damage the device

. Warning

External protection (such as clamping diodes) must be installed if inductive loads are connected to
the 5 V Supply Output

CAN L/H

. Warning

CAN-bus requires no common reference (ground). However, it is recommended that GND (ground)
is carried along with CAN-L/H to prevent that the common-mode voltage is exceeded (resulting in
transceiver damage)

LIN VBAT

The LIN-bus positive reference. Supports systems operating from 4 V to 24 V.

• LIN1 VBAT: Pin is shared with device supply and shares the supply input protection circuit

• LIN2 VBAT: Tolerates voltage spikes up to 48V. Spikes above this can damage the interface

LIN Data

LIN-bus single-wire data line referenced to LIN VBAT.

0.3.2.2 Wiring example

Below example illustrates how the CANedge CAN-bus 1 (channel 1) can be connected.

o---o--------------------o------------ ... ---o------------o CAN 1 H (pin 7)
| | | | |

+++++ | | | +++++
| R | | | | | R |
+++++ | | | +++++

| | | | |
o------------o--------------------o--- ... ------------o---o CAN 1 L (pin 2)

|CANedge | | Node 1 | | Node N |
+--+--------+--+ +--+--------+--+ +--+--------+--+
CANH CANL		CANH CANL		CANH CANL
Supply GND		Supply GND		Supply GND
+--+--------+--+ +--+--------+--+ ... +--+--------+--+

(continues on next page)

8 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

(continued from previous page)

| | | | | |
o--------------------o------------ ... ---o-----------o SUPPLY (pin 9)

| | |
o--------------------o--- ... ------------o--o GND (pin 3)

0.3.3 LED
This section contains information on the device LEDs.

The LEDs are located at the back of the device as illustrated below.

Fig. 3: Back view. Hardware version 00.03.

Fig. 4: Back view. Hardware version ≤ 00.02

LED Short Name LED Color Main Function
PWR Green Power
CH1 Yellow Bus activity on connector 1

(CH1)
CH2 Yellow Bus activity on connector 2

(CH2)
MEM Red Memory card activity

0.3.3.1 PWR

The Power LED is constantly on when the device is in normal operation. An exception is when the
firmware is being updated (for more information see Firmware).

0.3.3.2 CH1 / CH2

The Channel 1/Channel 2 LEDs indicate bus activity on Channel 1 and 2 respectively.

0.3.3.3 MEM

The Memory LED indicates activity on the memory card. Config file parsing, message logging, file
upload etc. all generate activity on the memory card.

0.3. Hardware 9

CANedge1 Docs, 01.09.01, Release 01.09.01

0.3.4 SD-card
The CANedge uses an extractable SD-card to store the file system (see Filesystem for more information).

See Replacing SD-card for information on how to replace the SD-card.

. Warning

Never extract the SD-card while the device is on. Remove power first and wait a few seconds for the
device to turn off.

0.3.4.1 Type

The CANedge uses a specifically selected industrial grade SD-card with special timing constraints to
ensure safe shutdown when power is lost.

. Warning

The device cannot be guaranteed to work if the pre-installed SD-card is replaced by a card of another
type.

0.3.4.2 Lifetime

SD-card memory wears as any other flash based memory. The industrial grade SD-card provided with
the CANedge has the following guaranteed minimum endurance numbers:

Size [GB] TBW1 Lifetime @ 1MB/sec [years]2 Lifetime @ 1MB/min [years]
8 24 0.8 47.9
32 96 3.2 191.5

0.3.5 Enclosure
This section contains information on the device enclosure.

. Warning

Opening the enclosure can permanently damage the device due to e.g. ESD (electrostatic discharge)
- and improper handling may void the warranty

0.3.5.1 Technical drawings

PDF drawings and 3D STEP files can be found in the online documentation.

0.3.6 Label
This section contains information on the device label.

ò Note

The QR-code can be scanned to simplify installation of a new device

A unique label is attached to each device. Examples of the labels are illustrated below.
1 TBW: Terabytes Written
2 A constant logging rate of 1 MB/sec is likely much much higher than in any practical logging use-case

10 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

0.3.6.1 Hardware version 00.03

The label contains the following information:

• Unique device ID: EA9B650D

• Hardware version: 00.03

• Production date in format YYYYWW (WW = week number): 202301

• QR-code containing production date and device ID: 202301;EA9B650D;XXXXXXXXXXXX

0.3.6.2 Hardware version ≤ 00.02

The label contains the following information:

• Device type: CANedge1

• Production date in format YYYYWW (WW = week number): 201930

• Hardware version: 00.00

• Unique device ID: EA9B650D

• Data matrix (ECC200) containing production date and device ID: 201930;EA9B650D;
XXXXXXXXXXXX

0.3. Hardware 11

CANedge1 Docs, 01.09.01, Release 01.09.01

0.4 Configuration

0.4.1 General
This page documents the general configuration.

Table of Contents

• Configuration file fields

• Configuration explained

– Device meta data

– Security

– Debug

0.4.1.1 Configuration file fields

This section is autogenerated from the Rule Schema.

Device general.device

Meta data general.device.meta

Optional meta data string. Displayed in device file and log file headers. Example: Site1; Truck4; Confi-
gRev12

Type Min length Max length
string 0 30

Security general.security

Server public key general.security.kpub

Server / user ECC public key in base64 format. Shall match the encryption used for all protected fields.

Type Min length Max length
string 0 100

Debug general.debug

Debug functionality for use during installation and troubleshooting.

System log general.debug.syslog

System events logged to the SD-card. The log levels are listed in order of increasing amount of information
logged. Should only be enabled if needed during installation or troubleshooting.

Type De-
fault

Options

inte-
ger

1 Disable (0): 0 Error (1): 1 Error + Warning (2): 2 Error + Warning + Info (3): 3

Restart timer general.debug.restart_timer

Number of runtime hours after which the device automatically restarts (set 0 to disable). Example: Set
to 24 to restart after one day of runtime.

12 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Type Default Minimum Maximum
integer 0 0 168

0.4.1.2 Configuration explained

This section contains additional information and examples.

Device meta data

The device meta data is an optional string copied to the device.json file and log file headers.

Security

Some configuration field values can be encrypted to hide sensitive data stored in the Configuration File
(passwords etc.). In this section, we provide a technical summary and provide resource suggestions for
implementing the encryption.

The field encryption feature uses a key agreement scheme based on Elliptic Curve Cryptography (ECC)
(similar to the one used in a TLS handshake). The scheme allows the device and user to compute
the same shared secret, without exposing any secrets. The shared secret is in turn used to generate a
symmetric key, which is used to encrypt / decrypt protected field values.

The following sequence diagram illustrates the process of encrypting configuration fields:

0.4. Configuration 13

CANedge1 Docs, 01.09.01, Release 01.09.01

UserDevice (config.json)Device (device.json)

UserDevice (config.json)Device (device.json)

loop [8. Set values]

1. Load device public key (base64)

2. Decode (base64) device public key

3. Generate user ECC key pair

4. Calculate shared secret

5. Derive symmetric key from shared secret

6. Encode (base64) user public key

7. Set user public key in config

8a. Encrypt field value

8b. Concatenate iv and ct

8c. Encode (base64)

8d. Set value in config

Below we explain the sequence:

1. Load device public key field (kpub) from the device.json file

2. Decode the device public key (base64)

3. Generate random user key pair (public and private) using curve secp256r1

4. Calculate shared secret using device public key and user private key

5. Derive shared symmetric key using HMAC-SHA256 with “config” as data and shared secret as key.

14 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Use the first 16 bytes of the output

6. Encode user public key (used by the device to calculate the same shared symmetric key for decryp-
tion)

7. Set the encoded user public key in the device configuration file

8. Use AES-128 CTR to encrypt protected fields using the symmetric key. The resulting initialization
vector (iv) and cipher text (ct) are concatenated (iv + ct), base64 encoded and stored in the
configuration file

ò Note

The symmetric key shall match the public key set by the user in the configuration and protected
fields shall be encrypted with this symmetric key

ò Note

By storing the symmetric key it is possible to change specific protected fields - without updating the
user public key (and in turn all other protected fields)

Encryption tools

Tools are provided with the CANedge which can be used to encrypt sensitive fields.

Example Python code

You can batch-encrypt passwords across multiple devices using e.g. Python. Below we provide a basic
code sample to illustrate how Python can be used to encrypt plain-text data. The example code is tested
with Python 3.7.2 and requires the pycryptodome crypto library:

Python example code

Debug

System log

A system log can be enabled to output system events to a file (syslog.txt) stored on the SD-card. The
size of the log file is limited to 1 MB. The user can safely delete the log file at any time.

ò Note

Log levels 2-3 should only be enabled during installation or troubleshooting

System log verbosity levels:

0. Disabled

1. Error: Critical issues

2. Warning (+ Error): Temporary or less critical issues

3. Info (+ Error + Warning): Information generated by normal operation

Restart timer

The restart_timer can be used to restart the device automatically after a set number of hours. Set to
zero to disable.

0.4. Configuration 15

CANedge1 Docs, 01.09.01, Release 01.09.01

0.4.2 Logging
This page documents the logging configuration

Table of Contents

• Configuration file fields

• Configuration explained

– File split

– Compression

– Encryption

– Error Frames

0.4.2.1 Configuration file fields

This section is autogenerated from the Rule Schema file.

File log.file

File split size (1 to 512 MB) log.file.split_size

Log file split size in MB. When the file split size is reached a new file is created and the logging continues.
Closed log files can be pushed to a server if network is available. Small split sizes may reduce performance.

Type Default Minimum Maximum
integer 50 1 512

File split time period (0 to 86400 seconds, 0 = disable) log.file.split_time_period

Log file split time period in seconds relative to midnight (00:00:00). When a split time is reached a new
file is created and the logging continues. Closed log files can be pushed to a server if network is available.
Small split time periods may reduce performance.

Type Default Minimum Maximum Multiple of
integer 0 0 86400 10

File split time offset (0 to 86400 seconds) log.file.split_time_offset

Log file split time offset in seconds. This value offsets the split_time_period relative to midnight
(00:00:00). The set value shall be less than the split_time_period value.

Type Default Minimum Maximum Multiple of
integer 0 0 86400 10

Cyclic logging log.file.cyclic

With cycling logging mode enabled the oldest log file is deleted when the memory card becomes full,
allowing the logging to continue.

Type Default Options
integer 1 Disable: 0 Enable: 1

16 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Compression log.compression

Level log.compression.level

Window size used during optional compression. Larger window sizes yield potentially better compres-
sion rates, but may reduce logging performance. Compressed log files need to be decompressed prior to
processing.

Type De-
fault

Options

inte-
ger

0 Disable: 0 256 bytes window: 256 512 bytes window: 512 1024 bytes window:
1024

Encryption log.encryption

State log.encryption.state

Optional log file encryption. Encrypted log files need to be decrypted prior to processing. Decryption
requires your encryption password in plain form - if this is lost, the encrypted data cannot be recovered.

Type Default Options
integer 0 Disable: 0 Enable: 1

Error Frames log.error_frames

State log.error_frames.state

Specify whether to record error frames. Enabling this can negatively impact performance, as a potentially
large number of additional frames may be recorded.

Type Default Options
integer 0 Disable: 0 Enable: 1

0.4.2.2 Configuration explained

This section contains additional information and examples.

File split

File splitting can be based on file size or file size and time:

• split_time_period = 0: Split based on size only

• split_time_period > 0: Split based on both size and time - whichever is reached first

Limits

The file system limits should be considered when configuring the split size and time:

• SD-card size

• Max 1024 sessions

• Max 256 splits (log files) in each session

Above limits result in a maximum of 1024*256=262144 log files if fully utilised.

If the session count limit is reached, the logger will either:

• Stop logging if cyclic logging is disabled1

1 Logging resumes if files are offloaded via a network connection

0.4. Configuration 17

CANedge1 Docs, 01.09.01, Release 01.09.01

• Delete the oldest session if cyclic logging is enabled

If SD-card becomes full (no more space), the logger will either:

• Stop logging if cyclic logging is disabledPage 17, 1

• Delete the oldest split file from the oldest session if cyclic logging is enabled

Compression

Log files can be compressed on the device during logging using a variant of the LZSS algorithm based on
heatshrink. Compressed files will have *.MFC as file extension. A high window size improves compression
rates, but may cause message loss on very busy networks.

The table below lists results for J1939 and OBD data with different window size configurations2:

Window size (bytes) J1939 % (range) OBD % (range)
256 49.7 (47.1-51.4) 32.0 (30.3-32.8)
512 49.5 (46.3-51.6) 30.2 (29.6-31.1)
1024 41.4 (38.9-45.5) 30.0 (29.6-30.8)

Decompression can be done using an implementation of LZSS or using the tools provided with the
CANedge.

ò Note

The split size set in split_size considers the size of the compressed data. I.e. if the split size is 10
MB, the resulting file sizes become 10 MB regardless if compression is used or not.

Encryption

Log files can stored as encrypted (AES-GCM) *.MFE files.

ò Note

It is recommended to use a 40+ character password for proper encryption

Decryption can be done using an implementation of the PBKDF2 algorithm or using the tools provided
with the CANedge.

Error Frames

Enabling error frames will log errors across all interfaces, both CAN and LIN. Note that this can decrease
the performance of the device due to the added logging load.

For more information on logging of CAN-bus errors, see configuration/can/error:CAN errors.

0.4.3 Real-Time-Clock
This page documents the real-time-clock configuration

Table of Contents

• Configuration file fields

2 Compressed size in percentage of original. Lower is better.

18 CONTENTS

https://github.com/atomicobject/heatshrink

CANedge1 Docs, 01.09.01, Release 01.09.01

• Configuration explained

– Synchronization methods (sync)

– Time zone(timezone)

0.4.3.1 Configuration file fields

This section is autogenerated from the Rule Schema file.

Real-Time Clock (RTC) rtc

Configuration of the device real-time-clock.

Time synchronization method rtc.sync

Internal real-time-clock synchronization method. The real-time-clock is maintained when the device is
off.

Type Default Options
integer 0 Retain current time: 0 Manual update: 1 CAN-bus: 3

Time zone (UTC-12 to UTC+14) rtc.timezone

Adjustment in full hours to the UTC time. NOTE: Timezone only used in MF4 log file headers.

Type Default Minimum Maximum
integer 0 -12 14

Adjustment (-129600 to 129600 seconds) rtc.adjustment

Adjustment in seconds to the UTC time. Can be used for fine tuning the internal time.

Type Default Minimum Maximum
integer 0 -129600 129600

0.4.3.2 Configuration explained

This section contains additional information and examples.

The CANedge uses a real-time clock (RTC) with battery backup, which allows it to retain the absolute
date & time when the device is not powered. The RTC enables the CANedge to add absolute timestamps
to recorded messages.

Time-zone changes and minor adjustments can be done via the timezone and adjustment fields.

Synchronization methods (sync)

The RTC time can either be retained, manually set or synchronized via CAN-bus.

ò Note

When using an external synchronization source, the TimeExternal signals can be used to confirm
that the device correctly receives and understands the time synchronization information.

0.4. Configuration 19

CANedge1 Docs, 01.09.01, Release 01.09.01

Manual update

Manually changing the RTC is only needed if the RTC time has been completely reset (e.g. after a
battery replacement). The following sequence explains how the RTC can be manually set:

1. Select the manual sync method and set the current UTC time

2. Power on the device and wait a few seconds to allow the device to read the manually set time

3. Power off the device

4. Change the sync method to retain the current time

5. Power on the device again

6. Verify that the new absolute time is now correctly retained across power cycles

7. Set timezone (timezone) and do minor adjustments (adjustment) if needed

ò Note

The internally stored session counter is lost when the battery is removed. See Setting session counter
for information on how to set the session counter.

CAN-bus

The RTC can be synchronized based on a CAN-bus message. The interpretation of message data signals
is configurable.

Time information can be provided via either physical CAN-bus channel.

The synchronization method depends on the time difference between the RTC time and the external
time provided via CAN-bus:

• Time difference exceeds tolerance: The RTC time is directly set to the external time (discrete
jump in time)

• Time difference within tolerance: The RTC time slowly tracks the external time (continuous
time)1

The synchronization message data is assumed to include the external time and optionally a valid flag
indicating if the external time should be applied or not:

• Valid signal (optional): 1: Time signal is valid, else: Time signal is invalid

• Time signal (mandatory): The current UTC time as Epoch (floating-point number of seconds since
01/01/1970 00:00:00 UTC)

. Warning

Avoid using a high-frequency CAN-bus message for time synchronization. If the frequency of the
time message is high, consider using pre-scalers to reduce the period to e.g. 1 minute.

The configuration of the signals uses a concept similar to that used by .DBC files. In case a .DBC file
is available (describing the interpretation of the synchronization message), the information from the file
can be used directly for configuration. For more information see Section configuration/signal:Signal.

Example 1: Using both the valid signal and time signal (time message generated by a CANmod.GPS
device).

• The valid signal is 1 bit starting at index 0. The factor and offset are chosen such that the decoded
signal becomes 1 when the time signal is valid.

1 Continues tracking requires that an updated external time is available at least once each hour

20 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

• The time signal is 40 bit starting at index 8. After applying factor and offset the result becomes
Epoch in seconds.

Signal Type Byteorder Bitpos Length Factor Offset
Valid Unsigned Intel 0 1 1 0
Time Unsigned Intel 8 40 0.001 1577840400

Example 2: Same as Example 1 but without using the valid signal.

• The valid signal length is set to 0. With a factor of 0 and offset of 1, the result always becomes 1
(valid)

Signal Type Byteorder Bitpos Length Factor Offset
Valid Unsigned Intel 0 0 0 1
Time Unsigned Intel 8 40 0.001 1577840400

ò Note

If a valid signal is not included in the data, a constant valid signal can be enforced by setting the
factor to 0 and offset to 1.

Time zone(timezone)

The configured time zone is only used in MF4 log files headers. MF4 readers supporting localization,
can optionally apply the time zone when parsing log files.

0.4.4 Secondary port
This page documents the secondary port configuration

Table of Contents

• Configuration file fields

• Configuration explained

0.4.4.1 Configuration file fields

This section is autogenerated from the Rule Schema file.

Power schedule secondaryport.power_schedule

The daily power schedule is defined by a number of power-on from/to intervals. Define no power-on
intervals to keep always off. Define one interval with from/to both set to 00:00 to keep always on. Time
format is HH:MM (1 minute resolution). Uses UTC time.

Type Default Max items
array [] 5

Item secondaryport.power_schedule.item

From secondaryport.power_schedule.item.from

Power-on FROM time in format HH:MM. Shall be before power-on TO time. E.g. at midnight 00:00

0.4. Configuration 21

CANedge1 Docs, 01.09.01, Release 01.09.01

Type Default
string 00:00

To secondaryport.power_schedule.item.to

Power-on TO time in format HH:MM. Shall be after power-on FROM time. E.g. at midday 12:00.

Type Default
string 00:00

0.4.4.2 Configuration explained

This section contains additional information and examples.

ò Note

Power out scheduling has resolution of 1 min and 1 min tolerance

ò Note

Power scheduling always uses UTC time (regardless of configured time zone)

Example: Secondary port power is scheduled to be on daily in the interval 00:00-04:00 and
12:00-16:00. Secodary port configuration:

"secondaryport": {
"power_schedule": [

{
"from": "00:00",
"to": "04:00"

},
{

"from": "12:00",
"to": "16:00"

}
]

}

The power is turned off when the time changes from 03:59 to 04:00 and 15:59 to 16:00.

0.4.5 CAN
This page documents the CAN configuration.

The CANedge supports two physical CAN-bus channels and one internal virtual channel. The internal
channel is used for internally generated signals.

The configuration options of CAN Channel 1 and CAN Channel 2 are identical1. The internal channel
supports a limited set of configuration options.

The CANedge can detect and log CAN-bus errors if enabled in Logging. For more information, see
configuration/can/error:CAN errors.

The CAN configuration is split into the following sections:
1 All channels can be configured individually.

22 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

0.4.5.1 General

This page documents the general configuration

Table of Contents

• Configuration file fields

• Configuration explained

Configuration file fields

This section is autogenerated from the Rule Schema file.

General can.general

CAN-bus general configuration

Reception (rx) initial state can.general.rx_state

The initial state of CAN-bus reception. Can be changed using the control signal.

Type Default Options
integer 1 Disable: 0 Enable: 1

Transmission (tx) initial state can.general.tx_state

The initial state of CAN-bus transmissions. Can be changed using the control signal.

Type Default Options
integer 1 Disable: 0 Enable: 1

Configuration explained

This section contains additional information and examples.

The rx_state / tx_state initial states are primarily used in conjunction with the Control Signal. E.g.
transmission of messages from the CANedge can be initialized as disabled using tx_state and later
changed to enabled by a defined Control Signal.

0.4.5.2 Physical

This page documents the Physical (PHY) configuration.

• Configuration file fields

• Configuration explained

– Mode

– Retransmission

– Bit-rate configuration mode

– Bit-rate / bit-timing

– Examples

The Physical section configures parameters related to the CAN-bus.

0.4. Configuration 23

CANedge1 Docs, 01.09.01, Release 01.09.01

Configuration file fields

This section is autogenerated from the Rule Schema file.

Mode can.phy.mode

Device CAN-bus mode. Configures how the device interacts with the bus. In Normal mode, the device can
receive, acknowledge and transmit frames. In Restricted mode, the device can receive and acknowledge,
but not transmit frames. In Bus Monitoring mode, the device can receive, but not acknowledge or transmit
frames. It is recommended to always use the most restrictive mode possible.

Type De-
fault

Options

inte-
ger

1 Normal (receive, acknowledge and transmit): 0 Restricted (receive and acknowledge):
1 Monitoring (receive only): 2

Automatic retransmission can.phy.retransmission

Retransmission of frames that have lost arbitration or that have been disturbed by errors during trans-
mission.

Type Default Options
integer 1 Disable: 0 Enable: 1

CAN-FD specification can.phy.fd_spec

Configures the CAN-FD specification used by the device. Shall match the specification used by the CAN-
bus network.

Type Default Options
integer 0 ISO CAN-FD (11898-1): 0 non-ISO CAN-FD (Bosch V1.0.): 1

Bit-rate configuration mode can.phy.bit_rate_cfg_mode

Configures how the CAN-bus bit-rate is set. Modes Auto-detect and Bit-rate support all standard bit-
rates. Non-standard bit-rate configuration can be set using Bit-timing. It is recommended to set the
bit-rate manually if it is known.

Type Default Options
integer 0 Auto-detect: 0 Bit-rate (simple): 1 Bit-timing (advanced): 2

Configuration explained

This section contains additional information and examples.

Mode

The mode field configures to what extend the CANedge is allowed to communicate on the CAN-bus.

ò Note

It is recommended to use the most restrictive mode possible.

24 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Retransmission

The retransmission configures how the CANedge should react when message transmissions fail. Failed
transmissions can either be aborted or retried.

Bit-rate configuration mode

The bit_rate_cfg_mode, selects how the bit-rate is configured. In most cases, a simple bit-rate can be
set. For more advanced cases, the more extensive bit-timing can be used.

Bit-rate / bit-timing

The input clock to the CAN-bus controllers is set to 40 MHz (480 MHz prescaled by 12).

The bit-rate modes Auto-detect and Bit-rate (simple) support the following list of bit-rates12:

Bitrate BRP Quanta Seg1 Seg2 SJW
5k 100 80 63 16 4
10k 50 80 63 16 4
20k 25 80 63 16 4
33.333k 10 120 95 24 4
47.619k 8 105 83 21 4
50k 10 80 63 16 4
83.333k 4 120 95 24 4
95.238k 4 105 83 21 4
100k 5 80 63 16 4
125k 4 80 63 16 4
250k 2 80 63 16 4
500k 1 80 63 16 4
800k 1 50 39 10 4
1M 1 40 31 8 4
2M 1 20 15 4 4
4M 1 10 7 2 2

In Auto-detect mode, the device attempts to determine the bit-rate from the list of detectable bit-rates.
Depending on factors such as data patterns, bit-rate deviation etc. it may not always be possible to
detect the bit-rate automatically.

. Warning

It is recommended to set the bit-rate manually when possible

. Warning

Bit-rate auto-detect cannot be used to detect a CAN FD switched bit-rate

In mode Bit-timing (advanced), the bit-rate timing can be set directly. The following equations can
be used to calculate the bit-timing fields:

• Input clock: 𝐶𝐿𝐾 = 480000000
12 = 40000000 = 40 MHz

• Quanta: 𝑄 = 1 + 𝑆𝐸𝐺1 + 𝑆𝐸𝐺2

• Bit-rate: 𝐵𝑅 = 𝐶𝐿𝐾/𝐵𝑅𝑃
𝑄

1 All bit-rate configurations use a Sample-Point (SP) of 80%.
2 The CAN-FD Secondary-Sample-Point (SSP) is set to the same as the CAN-FD Sample-Point (SP).

0.4. Configuration 25

CANedge1 Docs, 01.09.01, Release 01.09.01

• Sample point: 𝑆𝑃 = 100 · 1+𝑆𝐸𝐺1
𝑄

Examples

Example: Matching bit-timing settings based on different input clock frequency (CLK).

Settings to match (based on a 80 MHz input clock):

• Bit-rate: 2M

• Quanta: 40

• SEG1: 29

• SEG2: 10

• Sample point: 75%

Above settings are based on an input clock with frequency:

𝐶𝐿𝐾 = 𝐵𝑅 · 𝑄 = 2000000 · 40 = 80 MHz

The CANedge uses a 40 MHz input clock. To obtain a bit-rate of 2 M with a 40 MHz input clock, the
number of quanta is calculated as:

𝑄 = 𝐶𝐿𝐾/𝐵𝑅𝑃

𝐵𝑅
= 40000000/1

2000000 = 20

To obtain a sampling point of 75%, SEG1 is calculated as:

𝑆𝐸𝐺1 = 𝑆𝑃 · 𝑄

100 − 1 = 75 · 20
100 = 14

Now, SEG2 is calculated as:

𝑆𝐸𝐺2 = 𝑄 − 𝑆𝐸𝐺1 − 1 = 20 − 14 − 1 = 5

The equivalent bit-timing settings using the 40 MHz input clock of the CANedge becomes:

• BRP: 1

• SEG1: 14

• SEG2: 5

0.4.5.3 Filter

This page documents the filter configuration

• Configuration file fields

• Configuration explained

– Filter processing

– Filter name

– Filter state

– Filter types

– Filter ID format

– Filter method

– Filter list examples

– Message Prescaling

26 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Configuration file fields

This section is autogenerated from the Rule Schema file.

Receive filters can.filter

Filter remote request frames can.filter.remote_frames

Controls if remote request frames are forwarded to the message filters. If `Reject` is selected, remote
request frames are discarded before they reach the message filters.

Type Default Options
integer 0 Reject: 0 Accept: 1

ID filters can.filter.id

Filters are checked sequentially, execution stops with the first matching filter element. Max 128 11-bit
filters and 64 29-bit filters.

Type Min items Max items
array 1 192

Item can.filter.id.item

Name can.filter.id.item.name

Optional filter name.

Type Max length
string 16

State can.filter.id.item.state

Disabled filters are ignored.

Type Default Options
integer 1 Disable: 0 Enable: 1

Type can.filter.id.item.type

Action on match, accept or reject message.

Type Default Options
integer 0 Acceptance: 0 Rejection: 1

ID-format can.filter.id.item.id_format

Filter ID-format. Filters apply to messages with matching ID-format.

Type Default Options
integer 0 Standard (11-bit): 0 Extended (29-bit): 1

Filter method can.filter.id.item.method

The filter ID matching mechanism.

0.4. Configuration 27

CANedge1 Docs, 01.09.01, Release 01.09.01

Type Default Options
integer 0 Range: 0 Mask: 1

From (range) / ID (mask) (HEX) can.filter.id.item.f1

If filter method is Range, this field defines the start of range. If filter method is Mask, this field defines
the filter ID.

Type Default Max length
string 0 8

To (range) / mask (mask) (HEX) can.filter.id.item.f2

If filter method is Range, this field defines the end of range. If filter method is Mask, this field defines
the filter mask.

Type Default Max length
string 7FF 8

Configuration explained

This section contains additional information and examples.

The following uses a mix of binary, decimal and hexadecimal number bases. For more information on
the notation used, see to Number bases.

ò Note

In the following, it is convenient to do some calculations using binary numbers (base 2). However,
the configuration file generally accepts either decimal or hexadecimal numbers.

Filter processing

The filter elements in the list of filters are processed sequentially starting from the first element. Pro-
cessing stops on the first filter match or when the end of the filter list is reached.

Example: A message matches filter element 3. Filter element 4 is not evaluated.

28 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Filter element 1 Filter element 2 Filter element 3 Filter element 4

Messages matching no filters are rejected as default.

ò Note

The default Configuration File contains filters accepting all incoming CAN messages

0.4. Configuration 29

CANedge1 Docs, 01.09.01, Release 01.09.01

Filter name

Filters can be assigned an optional name. The name is not used when processing a filter.

Filter state

The state of filter elements can be Enable or Disable. Disabled filter elements are ignored, as if they are
not in the list of filters. If there are no enabled filters in the list then all messages are rejected.

By disabling a filter element (instead of deleting the element) it can be easily enabled at a later time.

Filter types

Filter elements can be either Acceptance or Rejection:

• If a message matches an Acceptance filter it is accepted

• If a message matches a Rejection filter it is discarded

• If a message does not match a filter, the next filter in the list is processed

The filter list can hold a combination of Acceptance and Rejection filter elements. The first matching
filter element determines if a message is accepted or rejected. Acceptance and Rejection filters can be
combined to generate a complex message filtering mechanism.

Example: A message matches acceptance filter 3. Rejection filter 4 is not evaluated. The message is
accepted.

30 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Acceptance 1 Rejection 2 Acceptance 3 Rejection 4

Example: A message matches rejection filter 2. The following filters are not evaluated. The message is
rejected.

0.4. Configuration 31

CANedge1 Docs, 01.09.01, Release 01.09.01

Acceptance 1 Rejection 2 Acceptance 3 Rejection 4

Example: A message does not match any filters. The message is rejected.

32 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Acceptance 1 Rejection 2 Acceptance 3 Rejection 4

Filter ID format

A filter can only match with messages using the same ID format. Standard (11-bit) ID filters can match
standard ID messages and extended (29-bit) ID filters can match extended ID messages.

0.4. Configuration 33

CANedge1 Docs, 01.09.01, Release 01.09.01

Filter method

Acceptance and Rejection filters can be defined by range or mask. In either case, both the message type
(standard / extended) and ID are compared to the filter.

Filter range method

With the Range method, the filter defines a range of IDs which are compared to the message ID. Message
IDs within the range (both start and end included) match the filter.

The fields F1 and F2 respectively define the start (from) and the end (to) of the range.

Example: Standard ID filter with range from = 1, to = 10:

ID format ID (DEC) Match
Standard 0 No
Standard 1 Yes
Standard 10 Yes
Standard 11 No
Extended 1 No

Filter mask method

With the Mask method, the filter defines an ID and Mask which are compared to the message ID.

The fields F1 and F2 respectively define the Filter-ID and the Filter-mask.

A message matches a mask filter if the following condition is true1:

filter_id & filter_mask == message_id & filter_mask

Below provides some practical examples of filters using the mask method.

Example: Filter configuration which accepts one specific message ID: 200010 = 111110100002. The filter
ID is set to the value of the message ID to accept. The filter mask is set to all ones, such that all bits of
the filter are considered, as given in (1).

Filter ID
Filter mask
Masked filter

111110100002
&111111111112

111110100002

(1)
Message ID
Filter mask
Masked ID

111110100002
&111111111112

111110100002

(2)

To test if the message passes the filter, we apply the filter mask to the message ID as given in (2). The
masked filter and the masked ID are equal - the message matches the filter.

Example: Filter configuration which accepts two message IDs:

• 200010 = 111110100002

• 200110 = 111110100012

Note that the two binary numbers are identical except for the rightmost bit. To design a filter which
accepts both IDs, we can use the mask field to mask out the rightmost bit - such that it is not considered
when the filter is applied. In (1) the mask is set such that the rightmost bit is not considered (indicated
by red color).

Filter ID
Filter mask
Masked filter

111110100002
&111111111102

111110100002

(1)
Message ID
Filter mask
Masked ID

111110100012
&111111111102

111110100002

(2)

To test if the messages pass the filter, we apply the mask to the message ID 111110100012 as given in
(2). The masked filter and the masked ID are equal - the message matches the filter. Note that both

1 & is used as the bitwise AND operation

34 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

111110100002 and 111110100012 match the filter, as the rightmost bit is not considered by the filter (the
rightmost bit is masked out).

Example: J1939 - filter configuration which accepts PGN 61444 (EEC1) messages.

J1939 message frames use 29-bit CAN-IDs. The Parameter Group Number (PGN) is defined by 18 of
the 29 bits. The remaining 11 bits define e.g. the priority and source-address of the message. It is often
useful to configure a filter to accept a specific PGN while ignoring the remaining 11 bits - this can be
done using the filter mask.

Below, the left red bits represent the 3-bit priority, the green bits the 18-bit PGN and the right red bits
the 8-bit source address of the 29-bit CAN-ID.

000111111111111111111000000002 = 3FFFF0016

Message ID bits in positions with zero bits in the filter mask are ignored. By using 3FFFF0016 as filter
mask, the priority and source are ignored.

To specifically accept PGN 61444 (F00416) messages, the message ID is set to F0040016 - note the the
final 8-bit 0016 represents the source address which is ignored by the filter mask (these bits can be any
value).

Filter mask 3FFFF0016 can be used for all J1939 PGN (PDU2) messages. To accept specific PGNs, the
message ID is adjusted. To accept one specific PGN (as in the example above), the message ID is set to
the specific PGN with 0016 appended to represent the ignored source address field.

Filter list examples

Below examples demonstrate how filters can be combined into a list of filters.

Example: The filter list is set up to accept standard messages with even IDs in range 50010 − 100010
(500, 502, . . . 998, 1000):

The following two filters are used to construct the wanted filter mechanism:

• Rejection filter which rejects all odd message IDs

• Acceptance filter which accepts all message IDs in range 50010 − 100010

The rejection filter is setup to reject all odd messages by using Mask filtering. The filter is set up with:

• Filter ID: 110 = 000000000012

• Filter Mask: 110 = 000000000012

Above rejection filter rejects all messages with the rightmost bit set (all odd IDs).

The acceptance filter is set up to accept all messages in range 50010 − 100010 by using Range filtering.
The filter is set up with:

• Filter from: 50010

• Filter to: 100010

The filter list is constructed with the rejection filter first, followed by the acceptance filter.

0.4. Configuration 35

CANedge1 Docs, 01.09.01, Release 01.09.01

Filter elm: 1
Type: Rejection
Method: Mask

ID: 1
Mask 1

Filter elm: 2
Type: Acceptance
Method: Range

From: 500
To: 1000

Note that messages are first processed by the rejection filter (rejects all odd messages), then proccessed
by the acceptance filter (accepts all message in range). If none of the filters match, the default behavior is
to reject the message. It is in this case important that the rejection filter is placed before the acceptance
filter in the list (processing stops on first match).

Filter list test table:

36 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Message ID Filter elm 1 Filter elm 2 Result
49810 Ignore Ignore Reject
49910 Reject Reject
50010 Ignore Accept Accept
50110 Reject Reject
99910 Reject Reject
100010 Ignore Accept Accept
100110 Reject Reject
100210 Ignore Ignore Reject

Message Prescaling

Message prescaling can be used to reduce the number of received messages for a given message ID.
Prescaling is applied to the messages accepted by the associated filter. The list of filters can be assigned
a mixture of prescaler types.

Applying filters can dramatically reduce log file size, resulting in prolonged offline logging and reduced
data transfer time and size.

The prescaling type can be set to:

• None: Disables prescaling

• Count: Prescales based on message occurrences

• Time: Prescales based on message period time

• Data: Prescales based on changes in the message data payload

The first message with a given ID is always accepted regardless of prescaling type.

ò Note

A maximum of 100 unique message IDs can be prescaled for each CAN-bus channel (the first 100 IDs
received by the CANedge). Additional unique IDs are not prescaled

Count

Count prescaling reduces the number of messages with a specific ID by a constant factor (prescaling
value). A prescaling value of 2 accepts every 2nd message (with a specific ID), a value of 3 every 3rd
and so on up to 2562.

Example: Count prescaling applied to ID 60010 with a scaling value of 3.

ID (DEC) ID occurrences Result
60010 1 Accept
60010 2 Reject
60010 3 Reject
60010 4 Accept
60010 5 Reject

Time

Time prescaling sets a lower limit on the time interval (period time) of a specific message ID. This is
done by rejecting messages until at least the prescaler time has elapsed3. The prescaler timer is reset

2 A scaling factor of 1 effectively disables prescaling
3 Note that messages are not resampled to a specific fixed period time

0.4. Configuration 37

CANedge1 Docs, 01.09.01, Release 01.09.01

each time a message is accepted. The prescaling value is set in milliseconds4 with a valid range 1-4194304
(0x400000).

This prescaler type is e.g. useful if a slowly changing signal (low frequency signal content) is broadcasted
on the CAN-bus at a high frequency5.

Example: A slowly changing temperature measurement broadcasted every 10 ms (100Hz). Prescaled to
a minimum time interval of 100ms (prescaler value set to 100).

Example: Time prescaling applied to ID 70010 with a time interval of 1000ms.

ID (DEC) Message timestamp [ms] Prescaler timer [ms] Result
70010 200 0 Accept
70010 700 500 Reject
70010 1000 800 Reject
70010 1200 1000 -> 0 (reset) Accept
70010 1300 100 Reject
70010 3200 2000 -> 0 (reset) Accept
70010 4200 1000 -> 0 (reset) Accept
70010 5200 1000 -> 0 (reset) Accept

Data

Data prescaling can be used to only accept messages when the data payload changes. A mask can be
set to only consider changes in one or more specific data bytes. The mask works on a byte level. The
mask is entered in hex up to 8 bytes long (16 hex characters). Each byte contains 8 bits, allowing for
the mask to be applied to any of the maximum 64 data bytes (CAN FD).

This prescaler can be used to only receive a message when a part of the payload has changed.

Examples of data masks:

• "": An empty mask triggers on any data change (equivalent to mask value FFFFFFFFFFFFFFFF)

• 1: Triggers on changes to the first data byte (binary 1)

• 2: Triggers on changes to the second data byte (binary 10)

• 3: Triggers on changes to the first or second data byte (binary 11)
4 It is not possible to do sub-millisecond time prescaling
5 Higher frequency than needed to get a good representation of the signal content

38 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

• 9: Triggers on changes to the first or fourth data byte (binary 1001)

• FF: Triggers on changes to any of the first 8 data bytes (binary 11111111)

• 100: Triggers on changes to the 9th data byte (binary 100000000)

If the data payload contains more data bytes than entered in the mask, then changes to the additional
bytes are ignored by the prescaler.

. Warning

Data prescaling assumes that a the payload length of a specific message ID is constant

Example: A discretely changing signal is broadcast every 100 ms (10Hz). A data prescaler is used such
that only changes in the signal are logged.

Example: Data prescaling applied to ID 80010 with empty mask (all changes considered). D0-D3 is a
4-byte payload (with D0 the first data byte).

ID (DEC) D0 D1 D2 D3 Result
80010 00 11 22 33 Accept
80010 00 11 22 33 Reject
80010 00 BB 22 33 Accept
80010 AA BB 22 33 Accept
80010 AA BB 22 DD Accept
80010 AA BB 22 DD Reject

Example: Data prescaling applied to ID 80010 with mask 1 (considering only changes to the 1st data
byte). D0-D3 is a 4-byte payload (with D0 the first data byte).

ID (DEC) D0 D1 D2 D3 Result
80010 00 11 22 33 Accept
80010 00 11 22 33 Reject
80010 00 BB 22 33 Reject
80010 AA BB 22 33 Accept
80010 AA BB 22 DD Reject
80010 AA BB 22 DD Reject

0.4. Configuration 39

CANedge1 Docs, 01.09.01, Release 01.09.01

Example: Data prescaling applied to ID 80010 with mask 8 (considering only changes to the 4th data
byte). D0-D3 is a 4-byte payload (with D0 the first data byte).

ID (DEC) D0 D1 D2 D3 Result
80010 00 11 22 33 Accept
80010 00 11 22 33 Reject
80010 00 BB 22 33 Reject
80010 AA BB 22 33 Reject
80010 AA BB 22 DD Accept
80010 AA BB 22 DD Reject

Example: Data prescaling applied to ID 80010 with mask 9 (considering only changes to the 1st or 4th
data byte). D0-D3 is a 4-byte payload (with D0 the first data byte).

ID (DEC) D0 D1 D2 D3 Result
80010 00 11 22 33 Accept
80010 00 11 22 33 Reject
80010 00 BB 22 33 Reject
80010 AA BB 22 33 Accept
80010 AA BB 22 DD Accept
80010 AA BB 22 DD Reject

0.4.5.4 Transmit

This page documents the transmit configuration.

• Configuration file fields

• Configuration explained

The CANedge can be configured to automatically schedule and transmit a list of static messages. Each
transmit message can be configured as either single-shot or periodic.

Configuration file fields

This section is autogenerated from the Rule Schema file.

Transmit messages can.transmit

List of CAN-bus messages transmitted by the device. Requires a CAN-bus physical mode supporting
transmissions. Up to 224 messages can be configured (see documentation for more information).

Type Max items
array 224

Item can.transmit.item

Name can.transmit.item.name

Optional transmit message name.

Type Max length
string 16

40 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

State can.transmit.item.state

Disabled transmit messages are ignored.

Type Default Options
integer 1 Disable: 0 Enable: 1

ID-format can.transmit.item.id_format

ID-format of the transmit message.

Type Default Options
integer 0 Standard (11-bit): 0 Extended (29-bit): 1

Frame-format can.transmit.item.frame_format

Frame-format of the transmit message.

Type Default Options
integer 0 Standard: 0 Standard RTR: 2 FD: 1

Bit-Rate Switch can.transmit.item.brs

Determines if an FD message is transmitted using a switched bit-rate.

Type Default
integer 0

Include in log can.transmit.item.log

Determines if the transmitted message is included in the log file.

Type Default Options
integer 0 Disable: 0 Enable: 1

Period (10 ms steps) can.transmit.item.period

Time period of the message transmission. 0: single shot, >0: periodic. Unit is ms.

Type Minimum Maximum Multiple of
integer 0 4294967290 10

Delay (10 ms steps) can.transmit.item.delay

Offset message within the period or delay a single shot message. If multiple messages are transmitted by
the device, it is recommended to offset each separately to reduce peak load on bus. If period > 0, delay <
period. If single-shot, delay can be up to max value. Unit is ms.

Type Minimum Maximum Multiple of
integer 0 4294967290 10

Message ID (hex) can.transmit.item.id

0.4. Configuration 41

CANedge1 Docs, 01.09.01, Release 01.09.01

ID of message to transmit in hex. Example: 1FF.

Type
string

Messages Data (hex) can.transmit.item.data

Data bytes of message to transmit. RTR frames only use the number of bytes do determine the DLC.
Example: 01020304 or 0102030405060708.

Type Max length
string 128

Configuration explained

This section contains additional information and examples.

A total (CAN channel 1 and 2 combined) of up to 224 transmit messages can be configured. The specific
maximum number of messages depends on the data payload1. Examples of supported configurations are
listed below.

Table 1: CAN-bus scheduled transmission lists examples.

Example CAN-1 transmit list CAN-2 transmit list
Messages Bytes Messages Bytes
12 224 8 0
22 0 224 8
32 112 8 112 8
41 64 64 0
51 0 64 64
61 32 64 32 64

. Warning

The configuration file is defaulted if the limitations of the transmit lists are exceeded.

Period and delay

Transmit messages can be configured as either single-shot or periodic.

The period value determines if a message is single-shot (0) or periodic (>0). The interpretation of the
delay value depends on whether the message is single-shot or periodic (see more below).

ò Note

When possible, it is recommended to spread multiple transmit messages in time by using the delay
value.

1 Limited by the size of the data payloads (max 4096 bytes). Note, payloads of 1-3 bytes take up 4 bytes, payloads of
5-7 bytes take up 8 bytes.

2 Limited by the count of messages (max 224 messages)

42 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Single-shot

A transmit message is single-shot when the period is set to 0. In this case, the delay is the time between
boot-up3 and the single-shot transmission. Delaying a single-shot message can be useful if e.g. the
receiving node has a long boot-up time. The maximum value allows for a delay of up to several hours.

Example: Four single-shot transmit messages are configured with different delay values.

Period [ms] Delay [ms]
A 0 0
B 0 20
C 0 40
D 0 60

Below figure illustrates the transmission scheduling (arrow-heads symbolize transmissions).

A -->-- ...

B ------------>-------------------------------- ...

C ---------------------->---------------------- ...

D -------------------------------->------------ ...

| + | + | + | + |
t --+----+----+----+----+----+----+----+----+-- ...

| + | + | + | + |
0 ms 20 ms 40 ms 60 ms 80 ms

.

ò Note

Note how the transmissions do not coincidence.

Periodic

A transmit message is periodic when the period value is more than zero. In this case, the delay is the
time from the start of each period to the transmission (the offset within the period). Consequently, the
delay value must be less than the period value.

Example: Four periodic transmit messages are configured with delay values set to zero.

Period [ms] Delay [ms]
A 10 0
B 20 0
C 30 0
D 40 0

Below figure illustrates the transmission scheduling (arrow-heads symbolize transmissions).

A -->---->---->---->---->---->---->---->---->-- ...

B -->--------->--------->--------->--------->-- ...
(continues on next page)

3 The single-shot delay starts from when the internal transmission scheduling starts shortly after power is applied.

0.4. Configuration 43

CANedge1 Docs, 01.09.01, Release 01.09.01

(continued from previous page)

C -->-------------->-------------->------------ ...

D -->------------------->------------------->-- ...

| + | + | + | + |
t --+----+----+----+----+----+----+----+----+-- ...

| + | + | + | + |
0 ms 20 ms 40 ms 60 ms 80 ms

.

ò Note

Note how the transmissions periodically coincide in time. Avoid this by using delay values.

Example: Four periodic transmit messages are configured with the same period value and different delay
values.

Period [ms] Delay [ms]
A 40 0
B 40 10
C 40 20
D 40 30

Below figure illustrates the transmission scheduling (arrow-heads symbolize transmissions).

A -->------------------->------------------->-- ...

B ------->------------------->----------------- ...

C ------------>------------------->------------ ...

D ----------------->------------------->------- ...

| + | + | + | + |
t --+----+----+----+----+----+----+----+----+--

| + | + | + | + |
0 ms 20 ms 40 ms 60 ms 80 ms

.

ò Note

Note how the transmissions do not coincidence.

0.4.5.5 Control

This page documents the control configuration

Table of Contents

• Configuration file fields

44 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

• Configuration explained

– Examples

Configuration file fields

This section is autogenerated from the Rule Schema file.

Control can.control

Control signal

Control reception (rx) state can.control.control_rx_state

Control CAN-bus reception state (including logging)

Type Default Options
integer 0 Disable: 0 Enable: 1

Control transmission (tx) state can.control.control_tx_state

Control CAN-bus transmission state (including logging)

Type Default Options
integer 0 Disable: 0 Enable: 1

Start can.control.start

Message can.control.start.message

Channel can.control.start.message.chn

CAN-bus channel

Type Default Options
integer 0 CAN-internal: 0 CAN-1: 1 CAN-2: 2

ID-format can.control.start.message.id_format

ID-format of message.

Type Default Options
integer 0 Standard (11-bit): 0 Extended (29-bit): 1

ID (hex) can.control.start.message.id

ID of message in hex. Example: 1FF.

Type Default
string 0

ID mask (hex) can.control.start.message.id_mask

ID mask in hex. Example: 7FF.

0.4. Configuration 45

CANedge1 Docs, 01.09.01, Release 01.09.01

Type Default
string 7FF

Signal can.control.start.signal

Signal type can.control.start.signal.type

Type Default Options
integer 0 Unsigned: 0

Signal byteorder can.control.start.signal.byteorder

Can be Motorola (big endian) or Intel (little endian)

Type Default Options
integer 1 Motorola: 0 Intel: 1

Signal bit position can.control.start.signal.bitpos

Type Default Minimum Maximum
integer 0 0 512

Signal bit length can.control.start.signal.length

Type Default Minimum Maximum
integer 0 0 64

Signal scaling can.control.start.signal.factor

Type Default
number 0

Signal offset can.control.start.signal.offset

Type Default
number 0

Trigger high (dec) can.control.start.trigger_high

Type Default
number 0

Trigger low (dec) can.control.start.trigger_low

Type Default
number 0

46 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Stop can.control.stop

Message can.control.stop.message

Channel can.control.stop.message.chn

CAN-bus channel

Type Default Options
integer 0 CAN-internal: 0 CAN-1: 1 CAN-2: 2

ID-format can.control.stop.message.id_format

ID-format of message.

Type Default Options
integer 0 Standard (11-bit): 0 Extended (29-bit): 1

ID (hex) can.control.stop.message.id

ID of message in hex. Example: 1FF.

Type Default
string 0

ID mask (hex) can.control.stop.message.id_mask

ID mask in hex. Example: 7FF.

Type Default
string 7FF

Signal can.control.stop.signal

Signal type can.control.stop.signal.type

Type Default Options
integer 0 Unsigned: 0

Signal byteorder can.control.stop.signal.byteorder

Can be Motorola (big endian) or Intel (little endian)

Type Default Options
integer 1 Motorola: 0 Intel: 1

Signal bit position can.control.stop.signal.bitpos

Type Default Minimum Maximum
integer 0 0 512

Signal bit length can.control.stop.signal.length

0.4. Configuration 47

CANedge1 Docs, 01.09.01, Release 01.09.01

Type Default Minimum Maximum
integer 0 0 64

Signal scaling can.control.stop.signal.factor

Type Default
number 0

Signal offset can.control.stop.signal.offset

Type Default
number 0

Trigger high (dec) can.control.stop.trigger_high

Type Default
number 0

Trigger low (dec) can.control.stop.trigger_low

Type Default
number 0

Configuration explained

This section contains additional information and examples.

The control signal can be used to control message reception (i.e. logging) and / or message transmission
(e.g. processing of the transmit list) for each CAN-bus channel. The control signal has a flexible
configuration allowing for integration with many protocols. The control signal can e.g. be used to start
/ stop logging based on some application parameters, such as speed, RPM, geofence, time-of-day or
discrete events.

ò Note

The control-signals can trigger on Internal signals such as TimeCalendar (e.g. log only from 08:00
to 16:00)

The configuration of the signals uses a concept similar to that used by .DBC files. In case a .DBC file
is available (describing the interpretation of the control message signals), the information from the file
can be used directly for configuration. For more information see Section configuration/signal:Signal.

Control signal overview:

• A control signal can be configured for each CAN-bus channel

• A control signal can be based on messages from any channel

• One message ID is used for start and one for stop. These can be different or the same

• The message payload is decoded on the device, making it easy to set start / stop ranges

The start / stop ranges follow the following logic:

48 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

• If the start / stop ranges do not overlap, they are evaluated individually

• If the start range lies within the stop range, then start takes precedence (see examples below)

• If the stop range lies within the start range, then stop takes precedence (see examples below)

ò Note

File splitting is not affected by the control signal (i.e. the control signal does not force additional log
file splits)

ò Note

The control signal can only be used if accepted by the CAN-bus filter

ò Note

The initial states of message reception and transmission are set in configuration section General.

Examples

Example: Start / stop ranges not overlapping.

Can e.g. be used to start logging when speed signal exceeds some value and stop when it drops below
some other value.

Start trigger:

• High: 10000

• Low: 7500

Stop trigger:

• High: 2500

• Low: 0

Example: Start / stop ranges not overlapping.

0.4. Configuration 49

CANedge1 Docs, 01.09.01, Release 01.09.01

Can e.g. be used to start logging when pressure signal drops below some value and stop when it again
raises above some other value.

Start trigger:

• High: 2500

• Low: 0

Stop trigger:

• High: 10000

• Low: 7500

Example: Start range lies within stop range, start takes precedence.

Can e.g. be used to start logging when a temperature signal lies within some range and stop when
outside.

Start trigger:

• High: 7500

• Low: 2500

Stop trigger:

• High: 10000

• Low: 0

50 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Example: Stop range lies within start range, stop takes precedence.

Can e.g. be used to start logging when the absolute value of an acceleration signal exceeds a certain
value.

Start trigger:

• High: 5000

• Low: -5000

Stop trigger:

• High: 2500

• Low: -2500

0.4.6 LIN
The configurations of LIN Channel 1 and LIN Channel 2 are identical.

The LIN configuration is split into the following sections:

0.4. Configuration 51

CANedge1 Docs, 01.09.01, Release 01.09.01

0.4.6.1 Physical

This page documents the physical configuration

Table of Contents

• Configuration file fields

• Configuration explained

Configuration file fields

This section is autogenerated from the Rule Schema file.

Mode lin.phy.properties.mode

Device LIN-bus mode.

Type Default Options
integer 0 Subscriber: 0 Publisher: 1

Bit-rate lin.phy.properties.bit_rate

Type Default Options
integer 19200 2400: 2400 9600: 9600 10400: 10400 19200: 19200

Configuration explained

This section contains additional information and examples.

0.4.6.2 Frame Table

This page documents the frame table configuration

Table of Contents

• Configuration file fields

• Configuration explained

Configuration file fields

This section is autogenerated from the Rule Schema file.

Name lin.frames.items.name

Optional frame name.

Type Max length
string 16

Frame ID (hex) lin.frames.items.id

ID of frame in hex. Example: 0F.

52 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Type Max length
string 2

Frame Length (decimal) lin.frames.items.length

Length of the frame in decimal.

Type Minimum Maximum
integer 1 8

Checksum Type lin.frames.items.checksum_type

Type of the checksum used on the LIN-frame.

Type Default Options
integer 0 Enhanced: 0 Classic: 1

Configuration explained

This section contains additional information and examples.

The LIN controller expects default data lengths and checksums as explained in LIN . LIN-frames using
a different configuration (length, checksum or both) can be explicitly configured using the frame table.

ò Note

LIN frames satisfying the default expected configuration do not need to be inserted in the frame
table.

0.4.6.3 Transmit

This page documents the transmit configuration

Table of Contents

• Configuration file fields

• Configuration explained

– Publisher mode

– Subscriber mode

Configuration file fields

This section is autogenerated from the Rule Schema file.

Name lin.transmit.items.name

Optional transmit rule name.

Type Max length
string 16

0.4. Configuration 53

CANedge1 Docs, 01.09.01, Release 01.09.01

State lin.transmit.items.state

Disabled transmit rules are ignored.

Type Default Options
integer 1 Disable: 0 Enable: 1

Frame ID (hex) lin.transmit.items.id

Type Max length
string 2

Data (hex) lin.transmit.items.data

Type Max length
string 16

Configuration explained

This section contains additional information and examples.

The interpretation of the transmit list depends on the configuration of LIN bus mode:

Publisher mode

The number of bytes entered in the data field determines the interpretation of the transmission frame:

Length of data is zero

The transmit is a SUBSCRIBE frame, meaning that a Subscriber on the bus is expected to provide the
data payload (satisfying the frame table).

Length of data is above zero

The transmit is a PUBLISH frame, meaning that the CANedge provides the data payload.

In Publisher mode, the CANedge schedules the frame transmissions configured by the period and delay.

. Warning

Be aware that transmit uses period and delay to schedule transmissions. This is a different concept
than what is used by LDF files.

Subscriber mode

In Subscriber mode, the CANedge awaits a SUBSCRIBE frame with a matching ID from the bus
Publisher node. The number of bytes provided shall satisfy the frame table.

. Warning

If the transmit list contains multiple frames using the same ID, then only the first entry is used.

54 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

0.4.6.4 Topology

A LIN-bus consists of a Publisher node and one or more Subscriber nodes. The Publisher controls
scheduling of messages on the LIN-bus, and the Subscriber nodes react to the emitted messages.

A message on the LIN-bus can either be a PUBLISH message, in which case Publisher node transmits
both the message ID and data, or a SUBSCRIBE message, where the Publisher node only emits the
message ID and one of the Subscriber nodes fill the data section of the message.

The configuration of the LIN network shall ensure that each message has one producer, such that each
PUBLISH message is filled with data by the Publisher, while each SUBSCRIBE message has a node
connected to the network which can provide the data for the message.

An example of the bus topology with the CANedge connected as a subscriber is illustrated below:

0.4. Configuration 55

CANedge1 Docs, 01.09.01, Release 01.09.01

Publisher Subscriber 1 Subscriber N CANedge

The CANedge is primarily intended to act as a Subscriber on the LIN-bus. In lieu of a Publisher node,
the CANedge can be configured to emulate a simple Publisher node. In this case, the scheduling of
messages on the network has to be done through the transmit configuration for the interface. Since only
static data can be entered in the configuration, the simple Publisher node emulation cannot perform
dynamic operations based on the LIN-bus activity.

56 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

0.4.6.5 Data length

Unless configured otherwise, the device assumes that the length of the LIN frame data payload is always
defined by the message ID (bits 5 and 6 of the identifier), as defined in the table below:

Message ID Data length
00-31 (0x00-0x1F) 2
32-47 (0x20-0x2F) 4
48-63 (0x30-0x3F) 8

This can be overridden in the configuration of the frame table.

0.4.6.6 Checksum

Supports LIN 1.3 classic checksum and LIN 2.0 enhanced checksum format. By default, all frames except
ID 0x3C and 0x3D use enhanced checksum. This can be overridden on a frame by frame basis in the
configuration of the frame table.

0.4.6.7 LIN Errors

The CANedge can detect and log errors on the LIN-bus if enabled in Logging configuration. The detected
errors are categorized as follows:

• Checksum errors

• Receive errors

• Synchronization errors

• Transmission errors

The amount of associated data depends on the type of error. E.g. synchronization errors cannot con-
tain information about the message ID, as it happens before that field is transmitted, and checksum
information is not embedded in other cases than the checksum error case.

Checksum Errors

Checksum errors denotes that the node has calculated a different checksum than the one embedded in
the LIN message on the bus. This can be an indicator of wrong configuration for the frame ID in the
CANedge frame table.

Example: In case no information is known about the LIN bus in advance, the default frame table can
be used with error logging enabled to help reverse engineer the actual frame table. Any message IDs
deviating from the standard table (and present on the LIN-bus) will get a logged entry. These IDs can
then be reconfigured in the CANedge frame table, in an attempt to find the correct settings.

Note that it can be necessary to change both message length and checksum model in order to get a valid
configuration.

Receive Errors

Receive errors are logged when a fixed part of the LIN message is not as expected, or that the node
detects a mismatch between the value being transmitted and the value sensed on the LIN-bus.

Synchronization Errors

Synchronization errors indicates an invalid synchronization field in the start of the LIN message, or that
there is a too large deviation between the configured bitrate for the node and the detected bitrate from
the synchronization field.

0.4. Configuration 57

CANedge1 Docs, 01.09.01, Release 01.09.01

Transmission Errors

Transmission errors can only occur for IDs registered as SUBSCRIBER messages. If there is no node on
the LIN-bus responding to a SUBSCRIBER message, a transmission error is logged.

0.4.7 Routing
This page documents the routing configuration.

. Warning

When routing messages between channels, care should be taken to avoid message ID collisions on the
destination channel.

• Configuration file fields

• Configuration explained

• Examples

The CANedge supports configurable routing of messages from CAN-internal (see internally generated
signals), CAN-1, CAN-2, LIN-1, and LIN-2 to CAN-1 and / or CAN-2. E.g. the CAN-internal Heartbeat
message can be routed to a physical CAN-bus channel to provide device status.

Table 2: Routing of messages to CAN-1 (left) and CAN-2 (right)

CAN-internal, CAN-2, LIN-
1, LIN2

CAN-1
CAN-internal, CAN-1, LIN-

1, LIN2
CAN-2

The routing list can contain up to 32 routing rules. When the CANedge receives a message on CAN-
internal, CAN-1, CAN-2, LIN-1, or LIN-2, it is compared to each (enabled) entry in the routing list. If
a match is found, the the message is routed to the configured destination-channel1.

1 The destination channel message ID-format and ID-value are configurable (need not to be the same as the source
message).

58 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

ò Note

A message can trigger multiple routing rules (e.g. be routed to multiple destination channels).

ò Note

A (CAN-bus) message can only be routed if both the rx-state of the source-channel and the tx-state
of the destination-channel are enabled (see General).

ò Note

CAN-bus filter prescalers also apply to routing source-messages (see Message Prescaling).

Se routing examples for practical use cases.

0.4.7.1 Configuration file fields

This section is autogenerated from the Rule Schema file.

Routing routing

Configuration of message routing. Up to 32 routing rules can be defined. Messages received on CAN-
internal, CAN-1, CAN-2, LIN-1, and LIN-2 can be routed to CAN-1 and/or CAN-2.

Type Min items Max items
array 0 32

Item routing.item

Name routing.item.name

Optional routing rule name.

Type Max length
string 16

State routing.item.state

Disabled routing rules are ignored.

Type Default Options
integer 1 Disable: 0 Enable: 1

Log routing.item.log

Determines if the output (transmit) message is included in the log file.

Type Default Options
integer 0 Disable: 0 Enable: 1

Source channel routing.item.chn_src

0.4. Configuration 59

CANedge1 Docs, 01.09.01, Release 01.09.01

Source message channel.

Type Default Options
integer 0 CAN-internal: 0 CAN-1: 1 CAN-2: 2 LIN-1: 3 LIN-2: 4

Source ID-format routing.item.id_format_src

Source message ID-format of source message. If source bus is LIN, then this field is ignored.

Type Default Options
integer 0 Standard (11-bit): 0 Extended (29-bit): 1

Source ID (hex) routing.item.id_src

Source message ID-value. Example: 1FF.

Type Default
string 0

Destination channel routing.item.chn_dst

Destination message channel.

Type Default Options
integer 1 CAN-1: 1 CAN-2: 2

Destination ID-format routing.item.id_format_dst

Destination message ID-format.

Type Default Options
integer 0 Standard (11-bit): 0 Extended (29-bit): 1

Destination ID (hex) routing.item.id_dst

Destination message ID-value. Example: 1FF.

Type Default
string 0

0.4.7.2 Configuration explained

This section contains additional information and examples.

In below, routing rule fields are explained in detail.

Name

A rule can be assigned an optional name. The name is not used when processing a rule.

60 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

State

The state field defines if a routing rule is active. Disabled rules are ignored, as if they are not in the
list of rules. By disabling a rule (instead of deleting) it can be easily enabled at a later time.

Log

The log field defines if routed messages are included in the log file. When enabled, a routed message is
logged once it has been successfully transmitted on the destination bus (transmission acknowledged).

ò Note

The received message on the source channel (routed to the destination channel) is logged regardless
of the value of this field.

Source channel

The chn_src field defines the routing rule source channel. Can be both virtual (see internally generated
signals) and physical channels.

Source ID-format

The id_format_src field defines the ID-format of the source message (on the source channel).

Source ID (hex)

The id_src field defines the ID-value of the source message (on the source channel).

Destination channel

The chn_dst field defines the routing rule destination channel. The destination channel can be either of
the physical CAN-bus channels.

ò Note

The routing rule is ignore if the source and destination channels are the same.

Destination ID-format

The id_format_dst field defines the ID-format of the destination message (on the destination channel).

Destination ID (hex)

The id_dst field defines the ID-value of the destination message (on the destination channel).

0.4.7.3 Examples

Example: Routing of the CAN-internal Heartbeat signal to physical channels CAN-1 and CAN-2.

The source message is routed to CAN-1 and CAN-2. The destination ID-format and ID-value are set
specifically for each destination channel.

0.4. Configuration 61

CANedge1 Docs, 01.09.01, Release 01.09.01

Name (op-
tional)

State Log Source
channel

Source ID-
format

Source
ID

Destination
channel

Destination
ID-format

Destina-
tion ID

Heartbeat
CAN-1

En-
able

Dis-
able

CAN-
internal

Standard 2 CAN-1 Extended 1F000001

Heartbeat
CAN-2

En-
able

Dis-
able

CAN-
internal

Standard 2 CAN-2 Extended 1F000002

ò Note

With logging disabled, the routed messages do not generate a log entry when transmitted on the
destination channels.

Example: Routing of message from CAN-1 to CAN-2 with logging.

The source message is routed from physical CAN-1 to physical CAN-2. The output message is logged if
successfully transmitted on the destination bus (CAN-2).

Name (op-
tional)

State Log Source
channel

Source ID-
format

Source
ID

Destination
channel

Destination
ID-format

Destina-
tion ID

CAN-1 to
CAN-2

En-
able

En-
able

CAN-1 Standard 1FF CAN-2 Standard 1FF

Example: Routing of message from LIN-1 to CAN-1

Name
(optional)

State Log Source
channel

Source ID-
format

Source
ID

Destination
channel

Destination
ID-format

Destina-
tion ID

LIN-1 En-
able

Dis-
able

LIN-1 Standard A0 CAN-1 Standard A0

ò Note

When source channel is LIN-1/2, the value of source ID-format is unused.

The CANedge device uses a JSON file placed on the memory card for configuration.

The JSON format makes it easy to configure the device using custom tools, scripts, JSON editors or
plain text editors. The configuration rules (min, max, . . .) are defined using a JSON Schema, which is
also stored on the memory card.

The Rule Schema serves as a guide for populating the Configuration File - and for automatically validating
a Configuration File. Both the Configuration File and Rule Schema are automatically generated by the
device if either is not found on the memory card. .. note:: The default configuration can be restored by
deleting the existing Configuration File from the memory card and powering the device

ò Note

JSON files and JSON Schema rules are supported by most programming/scripting languages, making
it easy to automate generation/validation of the device configuration in custom tools

62 CONTENTS

https://json-schema.org/

CANedge1 Docs, 01.09.01, Release 01.09.01

Naming

The config and schema are placed in the root of the memory card and named as follows:

• Configuration File: config-[FIRMWARE_MAJOR].[FIRMWARE_MINOR].json

• Rule Schema: schema-[FIRMWARE_MAJOR].[FIRMWARE_MINOR].json

With [FIRMWARE_MAJOR] and [FIRMWARE_MINOR] taken from the device firmware version.

The firmware patch number is not included in the file naming as patches are guaranteed not to change
the structure of the device configuration. For more information on the firmware versioning system, refer
to the Firmware section.

Example: If the firmware version is 01.02.03, then the config and schema files are named config-01.
02.json and schema-01.02.json, respectively.

0.4. Configuration 63

CANedge1 Docs, 01.09.01, Release 01.09.01

0.5 Filesystem

0.5.1 Device file
A Device File (device.json) is located in the root of the SD-card with info on the device. The content
of the Device File is updated when the device powers on.

{
"id": "4F07A3C3",
"type": "0000001D",
"kpub": "l27UKi4ehjpxxEdmRstBk5UaqSGQYnfylzUNs9EOoJfDodvr/

→˓PqNnMrz61IxzrBfFTmuhw2K2cJ4q60iFiYM8w==",
"fw_ver": "01.01.02",
"hw_ver": "00.03",
"cfg_ver": "01.01",
"cfg_name": "config-01.01.json",
"cfg_crc32": "9ECC0C10",
"sch_name": "schema-01.01.json",
"log_meta": "Truck1",
"space_used_mb": "36/7572",
"sd_info": "000353445341303847801349A26A0153",
"sd_used_lifespan": "2",
"reset_cause": ""

}

Additional content may be added to the device.json in future firmware updates.

0.5.1.1 Fields explained

Base

• id: Device unique ID number

• type: Device type (CANedge1 = 0000001D)

• kpub: Device public key in Base-64 format

• fw_ver: Firmware version

• hw_ver: Hardware version

• cfg_ver: Configuration File version

• cfg_name: Configuration File name

• cfg_crc32: Configuration File checksum

• sch_name: Configuration Rule Schema name

• log_meta: Configurable device string (e.g. application name)

• space_used_mb: The SD-card used space of the total in MB ([used]/[total])

• sd_info: Information about the SD card, including unique serial number in hex

• sd_used_lifespan: The SD-card self-reported health in percent of lifetime used, or ? if unavailable

• reset_cause: For debugging purposes

0.5.2 Log file
This page documents the log files stored on the device SD-card.

64 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

Table of Contents

• Format

• Naming

• Generic header

– Encrypted files

– Compressed files

– Encrypted and compressed files

0.5.2.1 Format

The CANedge logs data in the industry standard MDF4 format, standardized by ASAM. MDF4 is a
binary format which allows compact storage of huge amounts of measurement data. It is specifically
designed for bus frame logging across e.g. CAN-bus, LIN-bus and Ethernet. MDF4 is widely adopted
by the industry and supported by many existing tools.

Specifically, the CANedge uses MDF version 4.11 (file extension: *.MF4).

Timestamps

Each record is timestamped with 50 us resolution.

Finalization & sorting

The CANedge stores log files as unfinalized and unsorted to enable power safety. Finalization2 and
sorting3 can be done as a post-processing step to speed up work with the files.

ò Note

It may be necessary to finalize/sort a log file before it is loaded into some MDF tools

Additional metadata about the device is captured in the files, including many of the fields exposed in
the device file.

• serial number: Device unique ID number

• device type: Device type (CANedge1 = 0000001D)

• firmware version: Firmware version

• hardware version: Hardware version

• config crc32 checksum: Configuration File checksum

• storage total: The SD-card total space in kB

• storage free: The SD-card free space in kB

• storage id: The SD-card identifier

• session: File session counter

• split: File split counter

• comment: Configurable device string (e.g. application name)
2 The MDF file header includes information on how to finalize the MDF file before use
3 Sorting refers to an organization of the log records which enable fast indexing. It is not related to sorting of timestamps.

0.5. Filesystem 65

CANedge1 Docs, 01.09.01, Release 01.09.01

0.5.2.2 Naming

Log files are organized by the following path structure:

LOG/[DEVICE_ID]/[SESSION_COUNTER]/[SPLIT_COUNTER].[FILE_EXTENSION]

The path is constructed from the following parts:

• LOG: Static directory name used to store log files

• DEVICE_ID: Globally unique device ID

• SESSION_COUNTER: Increased by one for each power cycle1

• SPLIT_COUNTER: Resets to 1 on each power cycle and increased by one for each file split

• FILE_EXTENSION: The file extension selected in the configuration (MF4 | MFC | MFE | MFM)

For details on log file splits and related limits, see the Logging Configuration section.

File extension

The default extension is MF4. With compression/encryption enabled the extension changes:

Compression enabled Encryption enabled File extension
.MF4

X .MFC
X .MFE

X X .MFM

With both compression and encryption enabled, the data is first compressed, then encrypted.

For details on compression and encryption, see the Logging Configuration section.

Path example

Example: Log file path: LOG/3B912722/00000004/00000189.MF4

• LOG: The static directory common for all log files

• 3B912722: The unique ID of the device which generated the log file

• 00000004: Generated during the 4th session / power cycle

• 00000189: Is log file number 189 of the session

• MF4: File type

0.5.2.3 Generic header

While plain MDF files are saved as MF4, encryption and/or compression uses a custom header to identify
and store relevant information for the files. All file headers consist of a generic 20 byte header, followed
by any specialized fields.

The generic header starts with an identifying sequence of the ASCII code for Generic File4. Following
are information of the header version (V Ge, currently 0x01), file type version (V FT), file type (FT) and
file sub-type (FTI). Finally, the device ID is stored. All numbers stored in the generic header are unsigned
and big endian formatted.

| <- 8 bytes -> |
| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte |
| 'G' 'e' 'n' 'e' 'r' 'i' 'c' ' '-> |

(continues on next page)

1 The session counter is also increased by one if the counter of splits in one session exceeds 256
4 Generic File maps to 12 bytes of ASCII, with no zero termination of the string.

66 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

(continued from previous page)

| <-'F' 'i' 'l' 'e' | V Ge | V FT | FT | FTI |
| Device ID (Uint32, BE) |

If required, a generic file may contain a footer as well, as specified by the format.

Encrypted files

Encrypted files have a file type of 0x11. The device supports AES encryption in Galois Counter Mode
(GCM), with a file sub-type of 0x01. The current version of the format is 0x00. The encrypted file
header stores three additional fields:

• The 12 bytes long initialization vector

• The number of hashing iterations for the key, stored as a 32 bit unsigned number in big endian
format

• 16 bytes of salt data for the hashing of the key

| <- 8 bytes -> |
| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte |
| IV/Nonce -> |
| <- IV/Nonce | Iterations (Uint32, BE) |
| Salt -> |
| <- Salt |

The encrypted file contains an additional footer. This stores the 16 byte tag generated when AES runs
in GCM mode. When decrypting, this tag should be checked to ensure the validity of the decrypted
data. There is no alignment requirement for the footer.

| <- 8 bytes -> |
| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte |
| GCM Tag -> |
| <- GCM Tag |

Compressed files

Compressed files have a file type of 0x22. At present, the only supported compression format is heatshrink
based. This is denoted by a file sub-type of 0x01. The current version of the format is 0x01. The
additional header data are two unsigned 32 bit numbers: Lookahead and window sizes.

| <- 8 bytes -> |
| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte |
| Lookahead (Uint32, BE) | Window (Uint32, BE) |

Following the header is the compressed data stream. Following the data stream is a footer with a
checksum over the compressed data. There is no alignment requirement for the footer. The checksum
format is often found online as CRC32 JAM or JAMCRC.

| <- 4 bytes -> |
| Byte | Byte | Byte | Byte |
| CRC32 (Uint32, BE) |

Encrypted and compressed files

If the file is both encrypted and compressed, it has been processed in two steps/streams. First the data
is piped through a compression step, next it is piped through an encryption step. Each step can have its
own version.

0.5. Filesystem 67

CANedge1 Docs, 01.09.01, Release 01.09.01

The SD-card filesystem is organized as illustrated by below example1:

/
config-XX.XX.json
uischema-XX.XX.json
schema-XX.XX.json
device.json
meta

...
LOG

[DEVICE_ID]
00000001

00000001.MF4
00000002.MF4
...

00000002
00000001.MF4
00000002.MF4
...

...

• config-XX.XX.json: Configuration file (device configuration)

• schema-XX.XX.json: Rule Schema file (configuration rules)

• uischema-XX.XX.json: UI Schema file (configuration presentation)

• device.json: Device file (device information)

• LOG/: Directory containing log files (see Naming for more information)

• meta/: Temporary folder for setting the internally stored session counter (see Setting session
counter for more information)

ò Note

Default Configuration, Schema, UISchema, and Device files are automatically re-created if deleted by
the user.

ò Note

The device will store the information in the meta folder internally and delete the folder if present
during startup

0.5.3 Replacing SD-card
The SD-card is not locked to the device. If the card is replaced (see SD-card hardware requirements), be
aware of the following points:

• If the card is replaced by a card from another CANedge, it is recommended to clear the card

• The configuration file can optionally be copied to the new card (else a default is automatically
created)

1 XX.XX is replaced by the firmware MAJOR and MINOR version numbers

68 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

0.5.4 Setting session counter

. Warning

Manually setting the session counter is usually only relevant when the internal battery has been
replaced.

To manually set the session counter, create the meta folder in the root of the SD-card. Inside the folder,
create a file called meta_log.json with the following template:

{
"session": 123

}

Replace 123 with the desired next session counter value.

0.5. Filesystem 69

CANedge1 Docs, 01.09.01, Release 01.09.01

0.6 Internal signals
This page documents the signals internally generated by the CANedge.

The signals are available through the internal CAN-bus channel. The signal messages can be filtered,
scaled, etc. as with the physical CAN-bus channels. See CAN for more information on CAN-bus channel
configuration.

The CAN-internal database file (.DBC) can be downloaded from the online documentation.

ò Note

Multiple variants of the CANedge share the same signal database. Not all signals are available for
all variants.

The remaining of this section is autogenerated from the database (DBC) file.

0.6.1 Messages

Message Format ID (DEC) ID (HEX) Bytes Description
Heartbeat Standard 2 0x002 7 Heartbeat, 1 Hz
TimeCalendar Standard 3 0x003 4 Calendar time

(UTC), 1 Hz
TimeExternal Standard 5 0x005 8 Time received,

event
GnssStatus Standard 101 0x065 1 GNSS status, 5

Hz
GnssTime Standard 102 0x066 6 GNSS time, 5 Hz
GnssPos Standard 103 0x067 8 GNSS position, 5

Hz
GnssAltitude Standard 104 0x068 4 GNSS altitude, 5

Hz
GnssAttitude Standard 105 0x069 8 GNSS attitude, 5

Hz
GnssDistance Standard 106 0x06A 3 GNSS distance, 1

Hz
GnssSpeed Standard 107 0x06B 5 GNSS speed, 5 Hz
GnssGeofence Standard 108 0x06C 2 GNSS ge-

ofence(s), 1
Hz

ImuAlign Standard 110 0x06E 7 IMU alignment, 1
Hz

ImuData Standard 111 0x06F 8 IMU data, 5 Hz

70 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

0.6.2 Signals
0.6.2.1 Heartbeat signals

Signal Start Length Factor Offset Unit Description
StateRxChInter-
nal

0 1 1 0

StateTxChInter-
nal

1 1 1 0

StateRxCh1 2 1 1 0
StateTxCh1 3 1 1 0
StateRxCh2 4 1 1 0
StateTxCh2 5 1 1 0
Epoch 8 32 1 1577840400𝑠 Epoch time (UTC)
Space 40 16 1 0 𝑀𝐵 SD-card space left

StateRxChInternal values

Value Description
0 Disable
1 Enable

StateTxChInternal values

Value Description
0 Disable
1 Enable

StateRxCh1 values

Value Description
0 Disable
1 Enable

StateTxCh1 values

Value Description
0 Disable
1 Enable

StateRxCh2 values

Value Description
0 Disable
1 Enable

0.6. Internal signals 71

CANedge1 Docs, 01.09.01, Release 01.09.01

StateTxCh2 values

Value Description
0 Disable
1 Enable

0.6.2.2 TimeCalendar signals

Signal Start Length Factor Offset Unit Description
Year 0 6 1 2000 Year
Month 6 4 1 1 Month
Day 10 5 1 1 Day
Hour 15 5 1 0 Hour
Minute 20 6 1 0 Minute
Second 26 6 1 0 Second

0.6.2.3 TimeExternal signals

Signal Start Length Factor Offset Unit Description
InternalEpoch 0 32 1 1577840400𝑠 Internal epoch time
ExternalEpoch 32 32 1 1577840400𝑠 External epoch time

0.6.2.4 GnssStatus signals

Signal Start Length Factor Offset Unit Description
FixType 0 3 1 0 Fix type
Satellites 3 5 1 0 Number of satellites used

FixType values

Value Description
0 No fix
1 Dead reckoning only
2 2D-fix
3 3D-fix
4 GNSS + dead reckoning combined
5 Time only fix

0.6.2.5 GnssTime signals

Signal Start Length Factor Offset Unit Description
TimeValid 0 1 1 0 Time validity
TimeConfirmed 1 1 1 0 Time confirmed
Epoch 8 40 0.001 1577840400𝑠 Epoch time

72 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

TimeValid values

Value Description
0 Invalid
1 Valid

TimeConfirmed values

Value Description
0 Unconfirmed
1 Confirmed

0.6.2.6 GnssPos signals

Signal Start Length Factor Offset Unit Description
PositionValid 0 1 1 0 Position validity
Latitude 1 28 1e-06 -90 𝑑𝑒𝑔 Latitude
Longitude 29 29 1e-06 -180 𝑑𝑒𝑔 Longitude
PositionAccuracy 58 6 1 0 𝑚 Position accuracy

PositionValid values

Value Description
0 Invalid
1 Valid

0.6.2.7 GnssAltitude signals

Signal Start Length Factor Offset Unit Description
AltitudeValid 0 1 1 0 Altitude validity
Altitude 1 18 0.1 -6000 𝑚 Altitude
AltitudeAccuracy 19 13 1 0 𝑚 Altitude accuracy

AltitudeValid values

Value Description
0 Invalid
1 Valid

0.6. Internal signals 73

CANedge1 Docs, 01.09.01, Release 01.09.01

0.6.2.8 GnssAttitude signals

Signal Start Length Factor Offset Unit Description
AttitudeValid 0 1 1 0 Attitude validity
Roll 1 12 0.1 -180 𝑑𝑒𝑔 Vehicle roll
RollAccuracy 13 9 0.1 0 𝑑𝑒𝑔 Vehicle roll accuracy
Pitch 22 12 0.1 -90 𝑑𝑒𝑔 Vehicle pitch
PitchAccuracy 34 9 0.1 0 𝑑𝑒𝑔 Vehicle pitch accuracy
Heading 43 12 0.1 0 𝑑𝑒𝑔 Vehicle heading
HeadingAccuracy 55 9 0.1 0 𝑑𝑒𝑔 Vehicle heading accuracy

AttitudeValid values

Value Description
0 Invalid
1 Valid

0.6.2.9 GnssDistance signals

Signal Start Length Factor Offset Unit Description
DistanceValid 0 1 1 0 Distance valid
DistanceTrip 1 23 1 0 𝑚 Distance traveled since last

reset

DistanceValid values

Value Description
0 Invalid
1 Valid

0.6.2.10 GnssSpeed signals

Signal Start Length Factor Offset Unit Description
SpeedValid 0 1 1 0 Speed valid
Speed 1 20 0.001 0 𝑚/𝑠 Speed m/s
SpeedAccuracy 21 19 0.001 0 𝑚/𝑠 Speed accuracy

SpeedValid values

Value Description
0 Invalid
1 Valid

74 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

0.6.2.11 GnssGeofence signals

Signal Start Length Factor Offset Unit Description
FenceValid 0 1 1 0 Geofencing status
FenceCombined 1 2 1 0 Combined (logical OR) state

of all geofences
Fence1 8 2 1 0 Geofence 1 state
Fence2 10 2 1 0 Geofence 2 state
Fence3 12 2 1 0 Geofence 3 state
Fence4 14 2 1 0 Geofence 4 state

FenceValid values

Value Description
0 Invalid
1 Valid

FenceCombined values

Value Description
0 Unknown
1 Inside
2 Outside

Fence1 values

Value Description
0 Unknown
1 Inside
2 Outside

Fence2 values

Value Description
0 Unknown
1 Inside
2 Outside

Fence3 values

Value Description
0 Unknown
1 Inside
2 Outside

0.6. Internal signals 75

CANedge1 Docs, 01.09.01, Release 01.09.01

Fence4 values

Value Description
0 Unknown
1 Inside
2 Outside

0.6.2.12 ImuAlign signals

Signal Start Length Factor Offset Unit Description
AlignStatus 0 3 1 0 IMU-mount alignment sta-

tus
AlignXYError 3 1 1 0 IMU-mount X or Y align-

ment error
AlignZError 4 1 1 0 IMU-mount Z alignment er-

ror
AlignError 5 1 1 0 IMU-mount singularity error
AlignZ 8 16 0.01 0 𝑑𝑒𝑔 IMU-mount Z angle
AlignY 24 16 0.01 -90 𝑑𝑒𝑔 IMU-mount Y angle
AlignX 40 16 0.01 -180 𝑑𝑒𝑔 IMU-mount X angle

AlignStatus values

Value Description
0 Idle
1 Ongoing
2 Coarse
3 Fine

AlignXYError values

Value Description
0 No error
1 Error

AlignZError values

Value Description
0 No error
1 Error

AlignError values

Value Description
0 No error
1 Error

76 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

0.6.2.13 ImuData signals

Signal Start Length Factor Offset Unit Description
ImuValid 0 1 1 0 IMU status
AccelerationX 1 10 0.125 -64 𝑚/𝑠2 IMU X acceleration with a

resolution of 0.125 m/s^2
AccelerationY 11 10 0.125 -64 𝑚/𝑠2 IMU Y acceleration with a

resolution of 0.125 m/s^2
AccelerationZ 21 10 0.125 -64 𝑚/𝑠2 IMU Z acceleration with a

resolution of 0.125 m/s^2
AngularRateX 31 11 0.25 -256 𝑑𝑒𝑔/𝑠 IMU X angular rate with a

resolution of 0.25 deg/s
AngularRateY 42 11 0.25 -256 𝑑𝑒𝑔/𝑠 IMU Y angular rate with a

resolution of 0.25 deg/s
AngularRateZ 53 11 0.25 -256 𝑑𝑒𝑔/𝑠 IMU Z angular rate with a

resolution of 0.25 deg/s

ImuValid values

Value Description
0 Invalid
1 Valid

0.6. Internal signals 77

CANedge1 Docs, 01.09.01, Release 01.09.01

0.7 Firmware

0.7.1 Download Firmware Files
See the online documentation for the latest Firmware Files and changelog.

Firmware Files can be downloaded from the online documentation.

This page describes how to upgrade the device firmware.

Table of Contents

• Firmware versioning & naming

• Firmware Update

– Update process

– Configuration update

– Update from SD-card

0.7.2 Firmware versioning & naming
The device firmware versioning is inspired by the semantic versioning system.

Each firmware is assigned three two digit numbers: MAJOR, MINOR, PATCH:

• MAJOR: Incompatible changes (e.g. requires major changes to the Configuration File)

• MINOR: New backwards-compatible functionality (e.g. new fields in the Configuration File)

• PATCH: Backwards-compatible bug fixes (e.g. no changes to the Configuration File)

The firmware files available for download are zipped with naming as follows:

firmware-[MAJOR].[MINOR].[PATCH].zip

Example:

firmware-01.02.03.zip

0.7.3 Firmware Update
The device supports in-the-field firmware updates.

ò Note

The firmware update process is power safe (tolerates power failures). However, it is recommended to
ensure that the process completes

0.7.3.1 Update process

The firmware update process begins when the device is powered and has been prepared with a new
Firmware File:

1. Power is applied to device

2. The green LED comes on (can take a few seconds)

3. If the firmware is valid, the green LED blinks 5 times, else the red LED blinks 5 times

4. The green LED remains solid while the firmware is updated (~30 sec)

5. If the update is successful, the green LED blinks 5 times, else the red LED blinks 5 times

78 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

6. The updated firmware is started and the device is ready for logging

7. If any external modules need to be updated, then these updates are applied now (see Update of
external modules)

ò Note

The green LED comes on later than usual when a firmware update is initiated

ò Note

The device automatically removes any Firmware Files when the update has completed. Firmware
Files should never be manually deleted during the update process.

Update of external modules

External modules are updated while the device is (partly) operational. Updating external modules can
take from a few minutes and up to 1 hour. If power is lost during update of external modules, the update
resumes next time the device powers on.

0.7.3.2 Configuration update

If a device is updated to a firmware version with a different MAJOR or MINOR number, then the Configura-
tion File also needs to be updated (i.e. with an updated name and structure matching the new firmware).
The Configuration File is named as described in the Configuration section. A default Configuration File
and corresponding Rule Schema are contained in the firmware-package (zip).

To modify an existing Configuration File, it can be useful to load the new Rule Schema in an edi-
tor together with the old Configuration File. After making the necessary updates, save the modified
Configuration File with a name matching the new version.

ò Note

The firmware can be updated without providing a new compatible Configuration File. In this case,
the device creates a default Configuration File on the SD-card

0.7.3.3 Update from SD-card

The firmware can be updated by placing a Firmware File on the SD-card and powering the device:

1. Download the firmware zip (Firmware File + Configuration File + Rule Schema)

2. Place the firmware.bin file on the SD-card (root directory)

3. If MAJOR/MINOR is different, update the Configuration File and place it on the SD-card

4. Power on the device and wait for the update process to complete

ò Note

An incompatible firmware image is deleted and does not break the device

Example: Current firmware: 01.01.01, new firmware: 01.01.02

1. Download firmware-01.01.02.zip and unzip it

2. Copy firmware.bin to the SD-card

3. The MAJOR and MINOR versions are unchanged (no need to update the Configuration File)

0.7. Firmware 79

CANedge1 Docs, 01.09.01, Release 01.09.01

4. Power on the device and wait for the update process to complete

Example: Current firmware: 01.01.01, new firmware: 01.02.01

1. Download firmware-01.02.01.zip and unzip it

2. Copy firmware.bin to the SD-card

3. Update the Configuration File (or use the default created by the firmware update)

4. Power on the device and wait for the update process to complete

80 CONTENTS

CANedge1 Docs, 01.09.01, Release 01.09.01

0.8 Legal information

0.8.1 Usage warning

. Warning

Carefully review the below usage warning before installing the product

The use of the CANedge device must be done with caution and an understanding of the risks involved.
The operation of the device may be dangerous as you may affect the operation and behavior of a data-bus
system.

Improper installation or usage of the device can lead to serious malfunction, loss of data, equipment
damage and physical injury. This is particularly relevant when the device is physically connected to an
application that may be controlled via a data-bus. In this setup you can potentially cause an operational
change in the system, turn on/off certain modules and functions or change to an unintended mode.

The device should only be used by persons who are qualified/trained, understand the risks and understand
how the device interacts with the system in which it is integrated.

0.8.2 Terms & conditions
Please refer to our general terms & conditions.

0.8.3 Electromagnetic compatibility
The CANedge has been tested in accordance with CE, FCC and IC standards.

Certificates are available in the online documentation.

0.8.4 Voltage transient tests
The CANedge has passed below ISO 7637-2:2011 tests, performed by TÜV SÜD1:

ISO 7637-2:2011: Voltage transient emissions test on supply lines
ISO 7637-2:2011: Transient immunity test on supply lines

0.8.5 Contact details
For any questions regarding our products, please contact us:

CSS Electronics
EU VAT ID: DK36711949
Soeren Frichs Vej 38K (Office 35), 8230 Aabyhoej, Denmark
contact[AT]csselectronics.com
+45 91252563
www.csselectronics.com

The CANedge1 enables stand-alone logging of data from CAN- and LIN-bus to an SD-card.

The device offers a range of configuration options incl. message filtering, pre-scaling, transmit messages,
cyclic logging, compression, encryption, message-routing, and more.

The CANedge is based on open standards: No proprietary tools required. No subscription models. No
vendor lock-in. Users can leverage the CANedge tools - or integrate with custom applications.

1 Test performed using the hardware version ≤ 00.02 enclosure

0.8. Legal information 81

https://www.csselectronics.com/policies/terms-of-service
https://www.csselectronics.com

CANedge1 Docs, 01.09.01, Release 01.09.01

Fig. 5: Hardware version 00.03

82 CONTENTS

	About this manual
	Purpose
	Notation used
	Admonitions
	Number bases

	Specification
	Logging
	Real-time clock (RTC)
	CAN-bus (x2)
	LIN-bus (x2)
	Routing
	Electrical
	Mechanical

	Hardware
	Installation
	Supply quality
	Grounding
	Cable shielding
	CAN ISO 11898-2
	CAN-bus stub length
	Mounting

	Connectors
	Connector front
	Pinout
	Supply
	GND
	5 V Supply Output
	CAN L/H
	LIN VBAT
	LIN Data

	Wiring example

	LED
	PWR
	CH1 / CH2
	MEM

	SD-card
	Type
	Lifetime

	Enclosure
	Technical drawings

	Label
	Hardware version 00.03
	Hardware version 00.02

	Configuration
	General
	Configuration file fields
	Configuration explained
	Device meta data
	Security
	Debug
	System log
	Restart timer

	Logging
	Configuration file fields
	Configuration explained
	File split
	Compression
	Encryption
	Error Frames

	Real-Time-Clock
	Configuration file fields
	Configuration explained
	Synchronization methods (sync)
	Time zone(timezone)

	Secondary port
	Configuration file fields
	Configuration explained

	CAN
	General
	Configuration file fields
	Configuration explained

	Physical
	Configuration file fields
	Configuration explained
	Mode
	Retransmission
	Bit-rate configuration mode
	Bit-rate / bit-timing
	Examples

	Filter
	Configuration file fields
	Configuration explained
	Filter processing
	Filter name
	Filter state
	Filter types
	Filter ID format
	Filter method
	Filter range method
	Filter mask method
	Filter list examples
	Message Prescaling
	Count
	Time
	Data

	Transmit
	Configuration file fields
	Configuration explained
	Period and delay
	Single-shot
	Periodic

	Control
	Configuration file fields
	Configuration explained
	Examples

	LIN
	Physical
	Configuration file fields
	Configuration explained

	Frame Table
	Configuration file fields
	Configuration explained

	Transmit
	Configuration file fields
	Configuration explained
	Publisher mode
	Subscriber mode

	Topology
	Data length
	Checksum
	LIN Errors
	Checksum Errors
	Receive Errors
	Synchronization Errors
	Transmission Errors

	Routing
	Configuration file fields
	Configuration explained
	Name
	State
	Log
	Source channel
	Source ID-format
	Source ID (hex)
	Destination channel
	Destination ID-format
	Destination ID (hex)

	Examples

	Filesystem
	Device file
	Fields explained

	Log file
	Format
	Naming
	Generic header
	Encrypted files
	Compressed files
	Encrypted and compressed files

	Replacing SD-card
	Setting session counter

	Internal signals
	Messages
	Signals
	Heartbeat signals
	StateRxChInternal values
	StateTxChInternal values
	StateRxCh1 values
	StateTxCh1 values
	StateRxCh2 values
	StateTxCh2 values

	TimeCalendar signals
	TimeExternal signals
	GnssStatus signals
	FixType values

	GnssTime signals
	TimeValid values
	TimeConfirmed values

	GnssPos signals
	PositionValid values

	GnssAltitude signals
	AltitudeValid values

	GnssAttitude signals
	AttitudeValid values

	GnssDistance signals
	DistanceValid values

	GnssSpeed signals
	SpeedValid values

	GnssGeofence signals
	FenceValid values
	FenceCombined values
	Fence1 values
	Fence2 values
	Fence3 values
	Fence4 values

	ImuAlign signals
	AlignStatus values
	AlignXYError values
	AlignZError values
	AlignError values

	ImuData signals
	ImuValid values

	Firmware
	Download Firmware Files
	Firmware versioning & naming
	Firmware Update
	Update process
	Update of external modules

	Configuration update
	Update from SD-card

	Legal information
	Usage warning
	Terms & conditions
	Electromagnetic compatibility
	Voltage transient tests
	Contact details

